
ISEC

ISEC

Android Application Security II
Mobile Security 2025

Florian Draschbacher
florian.draschbacher@tugraz.at

ISEC

● Logic implemented in Java / Kotlin / C / C++

− “Contract between app and OS”: AndroidManifest.xml

● Apps are embedded in and driven by the platform framework

− Many different entry points

− Lots of callbacks

● Java APIs for basic functionality

− Data Types, File System APIs, Networking, Crypto, …

● Android APIs for OS integration

− IPC, HW access

Android App Development

ISEC

● Many APIs are Stubs for RPC interfaces to system services

− Run inside the system_server process (runs as system user)

● For example:
LocationManager is the RPC interface for LocationManagerService

● Example call flow:

1. Call LocationManager.getLastKnownLocation()

2. Binder is used to forward call to system_server process

3. LocationManagerService ensures that caller holds LOCATION permission

4. Result is returned through Binder

Demo: https://cs.android.com

Android API Architecture

https://cs.android.com/

ISEC

● At the lowest (kernel) level, IPC is implemented through Binder

● Arguments need to be serialised for passing them to other processes

− Affected classes need to implement Parcelable interface

Inter-Process Communication

public class MyParcelable implements Parcelable {

private int mData;

public int describeContents() { return 0; }

public void writeToParcel(Parcel out, int flags) { out.writeInt(mData); }

public static final Parcelable.Creator<MyParcelable> CREATOR = new Parcelable.Creator<MyParcelable>() {
public MyParcelable createFromParcel(Parcel in) { return new MyParcelable(in); }

public MyParcelable[] newArray(int size) { return new MyParcelable[size]; }

};

private MyParcelable(Parcel in) { mData = in.readInt(); }

}

ISEC

● The Android application framework evolved over time

− New APIs, deprecated APIs, changed permissions, policies, UI design, …

− Fragmentation: Backwards compatibility is important

● New Android version: New API (=SDK) Level

− Accessible through Build.VERSION_CODE

● Every app references 3 different API versions:

− Minimum SDK Version: App requires at least this API version

− Target SDK Version: App operates as if it was running on this Android version

− Compile SDK Version: All classes/methods known in this version may be used

Android Versions / API Levels

ISEC

● Apps can set Target SDK Level to bypass API policies introduced in later
version

Example:

● Runtime permissions were added in Android 6.0 (SDK/API Level 23)

● Only affected applications targetting API Level 23!

● Apps could set lower targetSdkVersion to bypass user prompts

● Google Play only allows upload of apps targetting most recent SDK Level!

− New: Starting in August 2023!

− Used to be ~2 releases behind the most recent SDK Level

Target SDK Level

ISEC

Key Framework Components

ISEC

● In many IPC transactions, an Intent carries arguments

− Specifying the component that should be launched

▪Explicitly (package and class name)

▪ Implicitly (action that should be supported)

− Data: A URI or file path to a remote or local file

− Extras: Key-Value pairs of arbitrary data

● The system is responsible for

− Resolving the Intent: What component should be used

− Instantiating and starting the target component

Intent

ISEC

● The base class for most Android app components

● Offers helper functions for

− Reading app resources and assets

▪ Context.getResource(), Context.openAssetStream()

− Obtaining IPC handles for system services

▪ Context.getSystemService()

− Accessing the app-private folder

▪ Context.getFilesDir()

− Launching or registering app components

▪ Context.startService(), Context.registerReceiver()

− …

Context

ISEC

● ~”A UI screen and its logic controller”

● All (visible) apps have a Main Activity

− May be started from the app launcher

● Launched through Context.startActivity()

− Intent specifies target activity & arguments

● Must be declared in AndroidManifest.xml

Activity

Picture: developer.android.com / Apache 2.0

https://developer.android.com/guide/topics/providers/images/content-provider-overview.png

ISEC

● If Activity should be launchable by other apps:

− Mark as exported in AndroidManifest.xml

● If Activity should support launching through implicit Intent:

− Mark with intent-filter in AndroidManifest.xml

Intent Filters

<activity android:name=".MainActivity” android:exported="true">

<intent-filter>
<action android:name="android.intent.action.MAIN" />
<category android:name="android.intent.category.LAUNCHER" />

</intent-filter>
<intent-filter>

<action android:name="android.intent.action.SEND"/>
<category android:name="android.intent.category.DEFAULT"/>
<data android:mimeType="text/plain"/>

</intent-filter>
</activity>

ISEC

● ~”Subscribe to system-wide events”

● Broadcasts are Intents published through Context.sendBroadcast()

− Sent by system components or apps to communicate certain events

− Their action carries information about the specific event

● BroadcastReceivers allow subscribing to specific events

− IntentFilter specifies desired action

● Broadcast senders or receivers may be protected using a permission

− Sender may restrict receivers to only those holding given permission

− Receiver may only accept broadcasts send by apps holding given permission

BroadcastReceiver

ISEC

● May be registered at runtime or statically through AndroidManifest.xml

− Statically registered: Don’t receive implicit broadcasts

− Dynamically registered: Only works while app is running

BroadcastReceiver

BroadcastReceiver receiver = new MyBroadcastReceiver();

IntentFilter filter = new IntentFilter("android.intent.action.AIRPLANE_MODE");
ContextCompat.registerReceiver(context, receiver, filter, ContextCompat.RECEIVER_EXPORTED);

<receiver android:name=".MyBroadcastReceiver" android:exported=”true">

<intent-filter>
<action android:name="android.intent.action.AIRPLANE_MODE" />

</intent-filter>

</receiver>

Don’t export BroadcastReceivers for app-internal broadcasts!

ISEC

● ~”Keep app running while no Activity is shown”

● Foreground Service: Visible to user through notification

● Background Service: Almost impossible nowadays

− Battery drain and security issues

● Must be declared in AndroidManifest.xml

− Binding to it (attaching to IPC interface) may be restricted using permission

− If bindable or launchable from other apps: Set exported=true

● Started using Context.startForegroundService()

Service

ISEC

● Services may offer functionality for call by other processes

− RPC implemented through Binder

● Interface defined in Android Interface Definition Language (AIDL)

− Proxy (hiding away low-level marshaling and RPC) auto-generated

● Apps may calls Context.bindService() to obtain service’s Binder handle

− Allows invoking functions of the service’s RPC interface

Services and IPC

ISEC

● ~“Selectively grant other apps access to database or files”

● Every data item is addressed through a content:// URI

● Some implemented by the system

− Others by third-party applications

● Optionally protected by permissions

− Separate permissions for read/write

ContentProvider

Source: developer.android.com

Picture: developer.android.com / Apache 2.0

https://developer.android.com/reference/android/content/ContentProvider
https://developer.android.com/guide/topics/providers/images/content-provider-overview.png

ISEC

Data Storage

ISEC

File Types
Pictures, Videos, Documents, Music, Databases, …

File Scopes
App-Specific Files

● Private to the application

● Sharing must be initiated by the app

File Locations
Internal Storage

● Always available

● Very limited capacity

Data Storage on Android

Public Files

● Not linked to a particular app

● Media, Documents, Downloads, …

External Storage

● Might be removable (SD, USB)

ISEC

On the first versions of Android, apps had

● Private folder(s) they could access without permissions

● Option to access (almost) full public file system by requesting permission

− Simply use Java File APIs

Today:

● Private folder(s) mostly staid the same

− Though additionally encrypted on Android 10+

● Full public file system access no longer possible

● All public file access routed through system ContentProviders

− Fine-grained per-path access control

Data Storage

ISEC

● App-Specific Files

− FileProvider: Implemented by apps to expose their files to other apps

● Media: Pictures, Audio, Videos

− MediaStore: Local centralised store, modifiable by apps

− CloudMediaProvider: Read-only media from cloud (Android 13)

● Documents: Editable files (+ anything that’s not media)

− DocumentProviders: Central component of the Storage Access Framework

− May be organised in a nested hierarchy

ContentProviders for Data Storage

Sources: developer.android.com, medium.com/androiddevelopers

https://developer.android.com/training/data-storage
https://medium.com/androiddevelopers/scope-storage-myths-ca6a97d7ff37

ISEC

An abstraction layer for file systems implemented on top of ContentProviders

● Several DocumentsProviders implement different data sources

− Have a concept of nested document trees (~ folders)

− External Storage

− Media Store (videos, photos, audio)

− Cloud Providers (Dropbox, Google Drive, …)

● Data source transparent to consuming applications

● User grants access to individual document or document trees

Storage Access Framework Android 4.4+

Source: developer.android.com

https://developer.android.com/training/data-storage/shared/documents-files

ISEC

In Android 11, SAF was made mandatory for accessing public files

● Apps may write to MediaStore without requiring extra permission

● Permission still needed to access items created by other apps

● File API is transparently rerouted to MediaStore provider

● Exemption: All files access permission

− Requires special approval for distribution through Google Play

Scoped Storage

Sources: developer.android.com, support.google.com

https://developer.android.com/about/versions/11/privacy/storage
https://support.google.com/googleplay/android-developer/answer/10467955

ISEC

Application Security

ISEC

Java Cryptography Architecture: Consumer abstracted from Implementor

● Cipher: Encryption and Decryption

● SecureRandom: Random Number Generation

● MessageDigest: Calculating hash values

● SecretKeyFactory: Deriving keys from passwords

● …

Java Secure Socket Extension:

● SSLSocket: Provides TLS and SSL communication

Android Cryptography APIs

ISEC

● Use Android’s HttpsURLConnection class

− By default: Secure TrustManager and HostnameVerifier
(Details depend on Android version)

− Possibility to use custom TrustManager and HostnameVerifier

● Use a third-party library such as OkHttp (built on top of SSLSocket)

− Usually secure custom TrustManager and HostnameVerifier

− Support self-signed certificates, certificate pinning, …

● Implement a custom HTTP stack on top of SSLSocket

− Secure system-default TrustManager

− HostnameVerifier up to developer!

HTTPS on Android

ISEC

● XML-based system for configuring self-signed certificates and pinning

● These use cases no longer require custom validation code

● Default NSC: Don’t trust user-installed CA certificates

However

● Even the NSC can be misconfigured

− Trust user-installed CAs

● Some applications still use custom TrustManagers or HostnameVerifiers

− Overrides the NSC system altogether

● NSC only works on Android 7 or later

− Silently ignored when app is run on older OS

Network Security Configuration (Android 7)

Source: developer.android.com

https://developer.android.com/training/articles/security-config

ISEC

● Use trusted high-level libraries instead of re-inventing the wheel

− Crypto: Google Tink

− HTTPS: OkHttp

● Follow best practices from official developer documentation

● Do not trust random code snippets from StackOverflow!

Avoiding Crypto API misuse

ISEC

More Interesting APIs

ISEC

● Android apps may use Java reflection

− Accessing classes, methods or fields through their names

● This sometimes allowed or facilitated apps to bypass API restrictions

− E.g. On early Android versions, Wifi AP could be started despite no official API

● Starting with Android 9: Restrictions on non-SDK interfaces

− Sine then: More and more APIs hidden away from apps

● There still are ways for bypassing these restrictions!

− Android 9 & 10: Use Double-Reflection / Meta-Reflection

− All versions: E.g. use JNI / Java Unsafe API to manipulate ART runtime structs

Reflection

ISEC

~”Service for helping impaired users navigate their device”

− Screen readers, Voice control, …

● Must be explicitly enabled by the user

− Multiple services may be enabled in parallel

● Can access UI of other apps and inject input events

− Very powerful role on the device!

● Google Play is very strict on which apps allowed to use
AccessibilityService API

− If not for accessibility: Disclose exact use, manual review

AccessibilityService

ISEC

~”Service for rerouting device’s Internet traffic”

− Receives IP packets of all other processes

● Must be explicitly allowed by the user

− Indicator in status bar, only one active VpnService allowed

● May collect information about user

− HTTPS: Accessed hosts

− HTTP: Full request + response

● Google Play is tying down on VpnServices

− Similar process as for AccessibilityService

VpnService

ISEC

● DeviceAdmin Apps: May enforce security policies on device

− E.g. password strength, disable camera, remote wipe / lock

● Must be explicitly enabled by user

− Once enabled: Must be disabled before app can be uninstalled

● Even more powerful role: DeviceOwner

− Must be explicitly enabled through ADB or Android Enterprise

− Can only disable (and therefore uninstall) itself

− May

▪ Install apps without user consent

▪Reboot the device

▪ Install trusted CA certificates

▪…

Device Administration API

ISEC

Vulnerabilities and Attacks

ISEC

Malicious apps may extract sensitive information using seemingly harmless
permissions

● Motion: Extract passwords from device movements (Cai et al, 2011)

● Sound: Use speaker and microphone as sonar, infer unlock patterns (Cheng et al., 2019)

● Power: Fingerprint websites from device’s power consumption (Quin et al, 2018)

● Time: Detect installed applications by timing API calls (Palfinger et al., 2020)

● Data: Fingerprint accessed websites from network traffic statistics (Spreitzer et al, 2018)

● Electromagnetic emissions: Extract screen content via SDR receiver (Liu et al, 2021)

Side Channels

https://www.usenix.org/legacy/events/hotsec11/tech/final_files/Cai.pdf
https://link.springer.com/article/10.1007/s10207-019-00449-8
https://ieeexplore.ieee.org/abstract/document/8456014
https://ieeexplore.ieee.org/abstract/document/9343137
https://dl.acm.org/doi/abs/10.1145/3212480.3212506
https://www.ndss-symposium.org/wp-content/uploads/ndss2021_4B-2_23021_paper.pdf

ISEC

● Benign applications may leak permissions to malicious apps

− E.g. due to exporting components designed for app-internal use

● Example:

Component Hijacking

public class VictimActivity extends Activity {
@Override
protected void onCreate(@Nullable Bundle savedState) {

Intent intent = new Intent(Intent.ACTION_CALL,
getIntent().getData());

startActivity(intent);
}

}

Victim App A (holds android.permission.CALL_PHONE)

public class AttackerActivity extends Activity {
@Override
protected void onCreate(@Nullable Bundle savedState) {

Intent intent = new Intent();
intent.setComponent(new ComponentName(”at.victim",

".VictimActivity"));
intent.setData(Uri.parse("tel://0800 123123"));
startActivity(intent);

}
}

Attacker App B (holds no permission)

<manifest package=”at.victim">
<uses-permission android:name="android.permission.CALL_PHONE" />
<application>

<activity
android:name=".VictimActivity"
android:exported="true”/>

</application>
</manifest>

VulnerableActivity.java

AndroidManifest.xml

➔ Attacker can initiate phone calls without
holding the corresponding permission

Source: Zhang et al.: AppSealer: Automatic Generation of Vulnerability-Specific Patches for Preventing Component Hijacking Attacks in Android Applications

https://www.ndss-symposium.org/wp-content/uploads/2017/09/10_4_1.pdf

ISEC

Apps commonly make mistakes in their use of cryptographic primitives

● Cipher: Using ECB mode, Re-using IV and key combination

● SecureRandom: Re-using seed value

● MessageDigest: Using MD5 algorithm

● SecretKeyFactory: Too low iteration count, salt re-use

● SSLSocket: Insecure TrustManager

2020 study found that > 99% of apps using crypto APIs make some mistake

Crypto API Misuse on Android

Source: Piccolboni et al: CRYLOGGER: Detecting Crypto Misuses Dynamically

https://arxiv.org/abs/2007.01061

ISEC

● Android apps may dynamically load code from external files

● It is possible to execute complete APKs in the context of another app

● Malicious app may pretend to be legitimate app

− By executing the original legitimate app in a malicious container

− Can intercept and extract all user data

● Malicious apps can evade detection by Play Store analysis

− Loading malicious components as plugins at runtime

Containerization

Sources: Shi et al: „VAHunt: Warding Off New Repackaged Android Malware in App-Virtualization’s Clothing”.
Luo et al: “Anti-Plugin: Don’t let your app play as an Android plugin” , blog.avast.com

https://dl.acm.org/doi/10.1145/3372297.3423341
https://www.blackhat.com/docs/asia-17/materials/asia-17-Luo-Anti-Plugin-Don't-Let-Your-App-Play-As-An-Android-Plugin-wp.pdf
https://blog.avast.com/malware-posing-as-dual-instance-app-steals-users-twitter-credentials

ISEC

● Android allows apps to display overlays on top of system UI

− Requires special permission (increasingly harder to obtain on modern Android)

● Accessibility Service apps can explore app UIs and inject input events

This enabled

● Context-aware clickjacking

− Overlay system UI to trick user e.g. into granting specific permission

● Inferring on-screen keyboard input

− Through ingenious side-channel that exploits the mitigation against clickjacking

No longer possible on modern Android versions (overlays restricted)!

UI Deception

Source: Fratantonio et al.: Cloak and Dagger: From Two Permissions to Complete Control of the UI Feedback Loop

https://www.ieee-security.org/TC/SP2017/papers/117.pdf

ISEC

● Registered an unprotected BroadcastReceiver

− Data parsed from received Intents: Data URI for download, Split ID

● Loaded data from URI and put into

− /data/data/com.app.abc/unverified-splits/{split_id}

● Unverified splits are verified and moved to verified-splits folder

● Files from verified-splits folder loaded into classpath

Problem: split_id not validated!

● Path traversal: Set split_id to “../verified_splits/config.test”

● Allows code execution in the context of victim app!

Google Play Core Library Vulnerability

Source: oversecured.com

https://blog.oversecured.com/Oversecured-automatically-discovers-persistent-code-execution-in-the-Google-Play-Core-Library/

ISEC

● For every IPC transaction (through Binder), arguments have to be serialised

− Arguments need to implement Parcelable interface from earlier today

● What if parsing the serialised Parcelable does not yield the original instance?

− i.e. !new Data(writeToParcel(myData, 0)).equals(myData)

− Data misalignment, subsequent data will be read from wrong offset!

Parcelable Mismatch

public class Data implements Parcelable {

private long mValue;

public void writeToParcel(Parcel out, int flags) { out.writeLong(mValue); }

public static final Parcelable.Creator<Data> CREATOR = new Parcelable.Creator<Data>() {

public Data createFromParcel(Parcel in) { return new Data(in); }

public Data[] newArray(int size) { return new Data[size]; }

};

private Data(Parcel in) {mValue = in.readInt(); }
}

!

ISEC

● If transaction contains Parcelables originating from system & malicious app:

− Data controlled by malicious app may spill into data originating from system

● E.g. Delivering broadcast to victim app

− Attacker App ➔ System ➔ Victim App

− Attacker App Parcelable: Intent

− System Parcelable: ActivityInfo

− May be exploited for code execution!

● Full writeup: https://github.com/michalbednarski/ReparcelBug2

● Parcelable was responsible for a series of critical Android vulnerabilities

− Situation improved with systemic changes in Android 12

Parcelable Mismatch

P
ic

tu
re

 S
o

ur
ce

: K
e

et
 a

l.:
 A

n
d

ro
id

 p
a

rc
e

ls
: t

h
e

 b
a

d
, t

h
e

 g
o

o
d

, t
h

e
 b

e
tt

e
r.

 B
la

ck
H

a
t

E
u

ro
p

e
2

0
22

https://github.com/michalbednarski/ReparcelBug2

ISEC

● 09.05.2025

− iOS Platform Security

● 16.05.2025

− iOS Application Security

Outlook

	Slide 1
	Slide 2: Android App Development
	Slide 3: Android API Architecture
	Slide 4: Inter-Process Communication
	Slide 5: Android Versions / API Levels
	Slide 6: Target SDK Level
	Slide 7
	Slide 8: Intent
	Slide 9: Context
	Slide 10: Activity
	Slide 11: Intent Filters
	Slide 12: BroadcastReceiver
	Slide 13: BroadcastReceiver
	Slide 14: Service
	Slide 15: Services and IPC
	Slide 16: ContentProvider
	Slide 17
	Slide 18: Data Storage on Android
	Slide 19: Data Storage
	Slide 20: ContentProviders for Data Storage
	Slide 21: Storage Access Framework
	Slide 22: Scoped Storage
	Slide 23
	Slide 24: Android Cryptography APIs
	Slide 25: HTTPS on Android
	Slide 26: Network Security Configuration (Android 7)
	Slide 27: Avoiding Crypto API misuse
	Slide 28
	Slide 29: Reflection
	Slide 30: AccessibilityService
	Slide 31: VpnService
	Slide 32: Device Administration API
	Slide 33
	Slide 34: Side Channels
	Slide 35: Component Hijacking
	Slide 36: Crypto API Misuse on Android
	Slide 37: Containerization
	Slide 38: UI Deception
	Slide 39: Google Play Core Library Vulnerability
	Slide 40: Parcelable Mismatch
	Slide 41: Parcelable Mismatch
	Slide 42: Outlook

