Ty,

Masking - Defeating Power Analysis Attacks

Side-Channel Security

Rishub Nagpal
June 6, 2023

IAIK — Graz University of Technology



Overview www.tugraz.at

Recap
Masking an algorithm

Inputs sharing

Masking a circuit

Unmask the result
Masking in practice: Hardware implementations
Masking in practice: Software implementations
Masking AES

Notes regarding task 3

Rishub Nagpal — IAIK — Graz University of Technology



Recap



Masking (Secret Sharing) www.tugraz.at

Cryptographic
Device
processes
We want to. ..
. . . Intermediate Randomized
e Operate on randomized intermediate values Value e

e But still require correct algorithm output
influences

Y

Power
Consumption
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Secret Sharing Intuition www.tugraz.at

e Compute f on input x and secret s. ..
e But avoid using s directly f(x,s) =y
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www.tugraz.at

Secret Sharing Intuition

e Compute f on input x and secret s. ..

e But avoid using s directly fx.s) =y
e Idea: Split s into e.g. 3 shares s1, s, s3 such that:
® S=5 05053 f(Xl,Sl):)d
e Individual shares do not reveal s f(x2, ) = y2
e Each 2-combination of shares does not reveal s
. f(X3, 53) =¥3
e The computed y1, y», y3 can be combined to y
Yy =Yy10)20y3
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www.tugraz.at

Secret Sharing Intuition

e Compute f on input x and secret s. ..
e But avoid using s directly

e Idea: Split s into e.g. 3 shares s1, s, s3 such that:
® 5S=5050S53
e Individual shares do not reveal s f(x2, ) = y2
e Each 2-combination of shares does not reveal s
e The computed y1, y», y3 can be combined to y f(xs,53) = y3

Yy =Yi10)y20y3

f(x1,51) = »
(

e For technical reasons:

e Split x into 3 shares xy, xo, x3 as well
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Secret Sharing Intuition www.tugraz.at

e Application to crypto operations: nc(x1, k1) = y1
Split key k into ki, ko, k3 nc(x2, ko) = y2
Split plaintext x into x1, x2, X3

enc(X3, k3) = V3

Compute ciphertext y =y 0y20y3
(Use new shares for each encryption!) Y =Y10)20)3

e We do secret sharing on one device and
multiple shares of the key k: ki,ko, ks —

>
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Masking an algorithm



How to mask ? www.tugraz.at

1. Write your computation an algebraic circuit.

2. Share the inputs.

3. Implement the circuit, replacing gates with masked gadgets.
4

. Unmask the result.
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Masking an algorithm

Inputs sharing



Sharing a bit www.tugraz.at

Input: x.

1: Xp < X

2. fori=1tod—1do
3: Xi gﬂ?z

4: Xg < XD @7:_11 X;

Output: (xo, ..., Xd—1)

If x is sensitive, run ahead of time.

n Rishub Nagpal — IAIK — Graz University of Technology



To not reuse a sharing: refresh www.tugraz.at

Input: (xo, ..., Xg—1)-
1. fori=1tod—1do
2 i (iFg

d—1
3: g @i:l (7
4: for i =0tod—1do
5 Vi< X Dri

Output: (yo, ..., Yd—1)-
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Masking an algorithm

Masking a circuit



Masked XOR Gate www.tugraz.at

Input: (xo0,- .-, Xd—1, (Yo, -+, Yd—1)-
1: fori=0tod—1do
2: Zi < Xi DYy

Output: (zo,...,2Zd—1)-
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Masked NOT Gate www.tugraz.at

Input: (xo,...,X4-1)
1: yo < —Xp
2. fori=1tod—-1do
3: Vi < Xj

Output: (yo, ..., Yd—1)-

n Rishub Nagpal — IAIK — Graz University of Technology



Masked AND Gate: ISW multiplication www.tugraz.at

Input: (xo, ..., Xd—1, (Yor---, Vd—1)-
1. for i=0tod—1do

2. forj=i+1tod—1do

3: r,-j<iIF2, 7 &=

4: for i =0tod—1do

5 for j=0tod—1do
6 pij <= Xi © yj

T if i # j then

8 tij < pij D rij

9 else

10: tij < pij

11: for i=0to d — 1 do
d—1
122 z;=€P; tj

Output: (zg,...,2d-1)-
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Other masked gates? www.tugraz.at

AND+NOT would be enough, but not efficient.

Rishub Nagpal — IAIK — Graz University of Technology



Other masked gates? www.tugraz.at

AND+NOT would be enough, but not efficient.
Other 2-input gates: NAND, OR, NOR?
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Other masked gates? www.tugraz.at

AND+NOT would be enough, but not efficient.
Other 2-input gates: NAND, OR, NOR? De Morgan laws
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Other masked gates? www.tugraz.at

AND+NOT would be enough, but not efficient.
Other 2-input gates: NAND, OR, NOR? De Morgan laws

More than 2 inputs?
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Other masked gates? www.tugraz.at

AND+NOT would be enough, but not efficient.
Other 2-input gates: NAND, OR, NOR? De Morgan laws

More than 2 inputs? Why not? Challenging to make efficient.
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Composition problem www.tugraz.at

What happens when we connect gadgets together in a larger circuit?

Are we still “secure” ?
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Composition problem www.tugraz.at

What happens when we connect gadgets together in a larger circuit?
Are we still “secure” 7

Masking security: t-probing model:

A circuit is t-probing secure if any observation of t wires in the circuit is independent
of the secret (unmasked) inputs.
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Masking an algorithm

Unmask the result



Unmasking www.tugraz.at

XOR shares together :)
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Beyond Boolean masking www.tugraz.at

Other masking approaches

e Arithmetic masking in Fon, Z,
e Table-based masking
e Threshold implementations

e Code-based masking
Other security models:

e region probing model
e random probing model

e noise leakage model
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Masking in practice: Hardware
implementations




Hardware leakage www.tugraz.at

Value overwriting: load xp then x;.

Transition leakage ~ xp @ x1.

To be avoided! — Hardwired “domains”.

In HW multiple operations are performed in a single clock cycle

Logic gates cause a certain delay of the signal

Propagation of signals in a combinatorial logic can lead to “glitches”

e Ephemeral incorrect computations
o |eakage

Modelled in the robust t-probing model.
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Masking - Additional Considerations in Hardware RIVEEE EaZat

Example: Glitches in first-order ISW AND gadget

o Do
oD
bl U
1l
D
bZ ANV
az <
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Masking - Additional Considerations in Hardware RIVEEE EaZat

Example: Glitches in first-order ISW AND gadget

o Do
oD
bl U
il
D
bZ ANV
az <
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Masking - Additional Considerations in Hardware www.tugraz.at

Example: Glitches in first-order ISW AND gadget

o Do
oD
bl U
& |-
D
bZ ANV
az <
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Masking - Additional Considerations in Hardware www.tugraz.at

Example: Glitches in first-order ISW AND gadget

o Nl
A
D
bl U
R L
WA
bZ U
\ 4
az e N s
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Masking - Additional Considerations in Hardware www.tugraz.at

Example: Glitches in first-order ISW AND gadget

C1

C2
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Masking - Additional Considerations in Hardware www.tugraz.at

Example: Glitches in first-order ISW AND gadget

@ -P— o
A
D
b AN
R
)
b2 U
\ 4
a P
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Masking - Additional Considerations in Hardware RIVEEE EaZat

Example: Glitches in first-order ISW AND gadget — DOM gadget

o Do
oD
bl U
1l
D
bZ ANV
az <
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Masking in practice: Software
implementations




Masking in software www.tugraz.at

e If you write C-code:

e Compilers can reorder instructions as long as logic is the same.
e Compilers can change logic as long as result is the same.
e Write assembly instead.
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Masking in software www.tugraz.at

e If you write C-code:
e Compilers can reorder instructions as long as logic is the same.
e Compilers can change logic as long as result is the same.
e Write assembly instead.
e A processor is still hardware...
e Transitions:
STORE R1 xO
STORE R1 x1
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Masking in software www.tugraz.at

e If you write C-code:

e Compilers can reorder instructions as long as logic is the same.
e Compilers can change logic as long as result is the same.
e Write assembly instead.

e A processor is still hardware...
e Transitions:
STORE R1 xO
STORE R1 x1

e Glitches: less of a problem.
e Countermeasures

e ‘“Lazy engineering”: double number of shares.
e + "Only one share in the processor"
O cao
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Recap - Masking www.tugraz.at

e At every point in time during encryption the processed data is random
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Recap - Masking www.tugraz.at

e At every point in time during encryption the processed data is random

e That data still leaks but has no correlation the original (unmasked) data
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Recap - Masking www.tugraz.at

e At every point in time during encryption the processed data is random
e That data still leaks but has no correlation the original (unmasked) data

e = First-order power analysis does not work anymore
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Recap - Masking www.tugraz.at

At every point in time during encryption the processed data is random

That data still leaks but has no correlation the original (unmasked) data

= First-order power analysis does not work anymore

Attacker could now consider combinations of points in the power trace
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Recap - Masking www.tugraz.at

At every point in time during encryption the processed data is random

That data still leaks but has no correlation the original (unmasked) data

= First-order power analysis does not work anymore

Attacker could now consider combinations of points in the power trace

How to choose the masking order? Depends on noise, etc.
Security: 1/SNR? (provable — but tricky).

Cost: O(d?) (for non-linear gadgets).

Deployed: 1%t and 2" order masking (?).

Practically-relevant order increase (stronger attacks, PQ Crypto).
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Masking AES




Masking - Application to AES www.tugraz.at

e AES consists of iterative application of 4 functions

e In case of AES-128 we have 10 (+1 initial) rounds
e Initial/final rounds are smaller

AES ROUND
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Masking - Application to AES www.tugraz.at

e AES consists of iterative application of 4 functions

e In case of AES-128 we have 10 (+1 initial) rounds
e Initial/final rounds are smaller

e |dentify linear/non-linear functions

AES ROUND
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Masking - Application to AES www.tugraz.at

e AES consists of iterative application of 4 functions

e In case of AES-128 we have 10 (+1 initial) rounds
e Initial/final rounds are smaller
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e |dentify linear/non-linear functions

e Split computation into shares accordingly

e XOR each byte of P with randomness — P1, P2
e Calculate functions on shares
e Pairwise XOR each byte of C1, C2 — C

MASKED AES ROUND




Masking - Application to AES

www.tugraz.at

AES consists of iterative application of 4 functions

e In case of AES-128 we have 10 (+1 initial) rounds

e Initial/final rounds are smaller

Identify linear/non-linear functions

Split computation into shares accordingly

e XOR each byte of P with randomness — P1, P2

e Calculate functions on shares
e Pairwise XOR each byte of C1, C2 — C

Done?

MIX MIX
COLUMNS COLUMNS
'ADD ROUND ADD ROUND
KEY KEY

Rishub Nagpal — IAIK — Graz University of Technology
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Masking - Application to AES

www.tugraz.at

AES consists of iterative application of 4 functions

e In case of AES-128 we have 10 (+1 initial) rounds

e Initial/final rounds are smaller

Identify linear/non-linear functions

Split computation into shares accordingly

e XOR each byte of P with randomness — P1, P2

e Calculate functions on shares
e Pairwise XOR each byte of C1, C2 — C

Done?

MIX MIX
COLUMNS COLUMNS
'ADD ROUND' 'ADD ROUND'
KEY KEY

Rishub Nagpal — IAIK — Graz University of Technology
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Be careful with ADD ROUNDKEY! www.tugraz.at

e Takes two inputs: State & Key
e State (51,52) is already shared, key is not

e XOR-ing key to both shares cancels out!
e (1=5 K
G=5dK

C=GaG=(599K)d(20K) =595

MASKED AES ROUND
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Be careful with ADD ROUNDKEY!

www.tugraz.at

e Takes two inputs: State & Key

e State (51,52) is already shared, key is not

e XOR-ing key to both shares cancels out!
[ ] Cl = 51 D K
G=5SdK

CZC1€9C2:(Sl@K)@(52®K):51@52

e Solution 1: XOR key only to one share

e Works... but defies the purpose of masking

MASKED AES ROUND
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Be careful with ADD ROUNDKEY!

www.tugraz.at

e Takes two inputs: State & Key

e State (51,52) is already shared, key is not

e XOR-ing key to both shares cancels out!
[ ] Cl = 51 D K
G=5SdK

CZC1€9C2:(Sl@K)@(52®K):51@52

e Solution 1: XOR key only to one share

e Works... but defies the purpose of masking
e Solution 2: XOR shared key to both shares

e Actually works
e Where do we get a shared key?

MASKED AES ROUND

Rishub Nagpal — IAIK — Graz University of Technology



Masking - How to Handle Keys? www.tugraz.at

e Easier way:

e Precompute all round keys
e Split them into shares, store them
e Requires lots of memory (problematic for xC, ASIC)
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Masking - How to Handle Keys? www.tugraz.at

e Easier way:

e Precompute all round keys
e Split them into shares, store them
e Requires lots of memory (problematic for xC, ASIC)

e Harder way:

e Calculate rounds keys on the fly...
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Masking - AES Key Schedule www.tugraz.at

e Operates on the 128-bit key state (4x4 bytes)
e Consists of:

e ROT WORD (one-byte left circular shift in one 4-byte array)
e SUB WORD (SUB BYTES applied to one 4-byte array)
e RCON (XOR of 4-byte round constant)

Rishub Nagpal — IAIK — Graz University of Technology



Masking AES - Recap so far

www.tugraz.at

e We know how to:

Split inputs into shares
Calculate linear functions

Handle keys

Recover output

MASKED AES ROUND
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Masking AES - Recap so far

www.tugraz.at

e We know how to:

Split inputs into shares
Calculate linear functions

Handle keys
e Recover output

e Remaining:

e Calculate non-linear functions

MASKED AES ROUND

Rishub Nagpal — IAIK — Graz University of Technology



SUB BYTEgH
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SUB BYTES www.tugraz.at

e AES would be a linear function without SUB BYTES

AES ROUND
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SUB BYTES www.tugraz.at

e AES would be a linear function without SUB BYTES
o Attack:
e Setup equation system that relates
key bits to P and C
e Collect pairs of P and C
e Solve system using Gaussian elimination

AES ROUND

Rishub Nagpal — IAIK — Graz University of Technology



SUB BYTES www.tugraz.at

Xo | X4 | X8 | X12

X1 Xs | X9 | X13

X2 | Xe| X0 |X14

e Implementation: SUB BYTES (x) =y

X3 | X7 | Xn

e Table-lookup

e One byte (8-bits) input/output

e Performed for each byte of the state Yol ya|ys [V
VA Ys | Yo 3

»—

Y2 | Ys| Y10 [y4
Y3 |y | VAL | Y15
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SUB BYTES www.tugraz.at

.0.1.2 .3 .4 .5.6.7.8.9 .a.b.c.d.e.f

|

| 63 7c 77 7b £2 6b 6f c5 30 01 67 2b fe d7 ab 76
| ca 82 c9 7d fa 59 47 f0 ad d4 a2 af 9c a4 72 cO
| b7 fd 93 26 36 3f f7 cc 34 ab e5 f1 71 d8 31 15
| 04 c7 23 c3 18 96 05 9a 07 12 80 e2 eb 27 b2 75
| 09 83 2c 1a 1b 6e 5a a0 52 3b d6 b3 29 e3 2f 84
| 53 d1 00 ed 20 fc bl 5b 6a cb be 39 4a 4c 58 cf
| dO ef aa fb 43 4d 33 85 45 f9 02 7f 50 3c 9f a8
| 51 a3 40 8f 92 94 38 f5 bc b6 da 21 10 ff £3 d2
| cd Oc 13 ec 5f 97 44 17 c4 a7 7e 3d 64 5d 19 73
| 60 81 4f dc 22 2a 90 88 46 ee b8 14 de 5e Ob db
| e0 32 3a 0a 49 06 24 5¢c c2 d3 ac 62 91 95 e4 79
| €7 c¢8 37 6d 8d d5 4e a9 6¢c 56 f4 ea 65 Ta ae 08
| ba 78 25 2e 1c a6 b4 c6 e8 dd 74 1f 4b bd 8b 8a
| 70 3e b5 66 48 03 f6 Oe 61 35 57 b9 86 cl 1d 9e
| el £8 98 11 69 d9 8e 94 9b le 87 e9 ce 55 28 df
| 8c al 89 0d bf e6 42 68 41 99 2d Of b0 54 bb 16

H 0 & 0 T M © 0 N O 0O & W N~ O
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Masking SUB BYTES Table Lookup www.tugraz.at

Xo | X4 | X8 | X12

e Desired behavior: Xt | Xs | Xs | x13
X2 | x X
X = X1 D X2 il sl el
xs | x7 | x
SUB BYTES(x1, x2) = (y1, y2) il Nl ekl
y=y1®Dy2
e Fix one share, precompute lookup table for Yo[Ya|¥e[Yr
the other share yilys|ye | ¥
e This approach is not so popular anymore... y2 | ye ym’yT
e Requires pre-calculation of 16 tables each round ]
Y3 |y | VAL | yis

e Memory demanding
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Masking SUB BYTES the Other Way... RIVEEE EaZat

e Desired behavior:

X = X1 P x2
SUB BYTES(x1, x2) = (y1, y2)
y=y1®y2

e Find out algebraic description of SUB BYTES
e Implement it using ordinary mathematical operations
e Mask those...

Rishub Nagpal — IAIK — Graz University of Technology



Algebraic Description of SUB BYTES www.tugraz.at

1. Interpret 8-bit input as polynomial over GF(2)
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Algebraic Description of SUB BYTES www.tugraz.at

1. Interpret 8-bit input as polynomial over GF(2)

2. Calculate its multiplicative inverse in GF(28)
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Algebraic Description of SUB BYTES www.tugraz.at

1. Interpret 8-bit input as polynomial over GF(2)
2. Calculate its multiplicative inverse in GF(28)

3. Transform the inverse using an affine transformation
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Algebraic Description of SUB BYTES www.tugraz.at

1. Interpret 8-bit input as polynomial over GF(2)

2. Calculate its multiplicative inverse in GF(28)

3. Transform the inverse using an affine transformation
4

. Interpret resulting polynomial as 8-bit output
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Algebraic Description of SUB BYTES www.tugraz.at

1. Interpret input

2. Calculate inverse

3. Transform inverse

1. Interpret 8-bit input as polynomial over GF(2)
e GF(2) = Galois Field(2) = Finite Field with two elements (0,1)

4. Interpret result
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Algebraic Description of SUB BYTES www.tugraz.at

1. Interpret input

2. Calculate inverse

3. Transform inverse

1. Interpret 8-bit input as polynomial over GF(2)
e GF(2) = Galois Field(2) = Finite Field with two elements (0,1)
e Input (hex): Oxee
o Input (bin): 0b11101110

4. Interpret result
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Algebraic Description of SUB BYTES www.tugraz.at

1. Interpret input

2. Calculate inverse

3. Transform inverse

1. Interpret 8-bit input as polynomial over GF(2)

GF(2) = Galois Field(2) = Finite Field with two elements (0,1)
Input (hex): Oxee

Input (bin): 0b11101110

IXF + 18+ 1 +0x* + 3+ 1%+ 1x 40

4. Interpret result
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Algebraic Description of SUB BYTES www.tugraz.at

. Interpret input

. Calculate inverse

. Transform inverse

AW N =

1. Interpret 8-bit input as polynomial over GF(2)

GF(2) = Galois Field(2) = Finite Field with two elements (0,1)
Input (hex): Oxee

Input (bin): 0b11101110

IXF + 18+ 1 +0x* + 3+ 1%+ 1x 40
x=x"+x%+x5+x3+x%+x

. Interpret result

Rishub Nagpal — IAIK — Graz University of Technology



Algebraic Description of SUB BYTES (1) www.tugraz.at

1. Interpret input

2. Calculate inverse
3. Transform inverse
2. Calculate multiplicative inverse of x in GF(28) 4. Interpret result
e GF(28) = Finite Field with 256 elements
(degree 7 polynomials, binary coefficients)
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Algebraic Description of SUB BYTES (1) www.tugraz.at

1. Interpret input

2. Calculate inverse
3. Transform inverse
2. Calculate multiplicative inverse of x in GF(28) 4. Interpret result
e GF(28) = Finite Field with 256 elements
(degree 7 polynomials, binary coefficients)
e Multiplicative inverse x ! satisfies: x x x™1 =1
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Algebraic Description of SUB BYTES (1) www.tugraz.at

. Interpret input

. Calculate inverse

. Transform inverse

AW N =

2. Calculate multiplicative inverse of x in GF(28)

e GF(28) = Finite Field with 256 elements
(degree 7 polynomials, binary coefficients)

. Interpret result

e Multiplicative inverse x ! satisfies: x x x™1 =1
e One small problem: 0 has no inverse, hence we simply map 0 to 0
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Algebraic Description of SUB BYTES (2) www.tugraz.at

1. Interpret input

2. Calculate inverse

3. Transform inverse

2. Calculate multiplicative inverse of x in GF(28) 4. Interpret result

e x!is calculated, e.g., via x®>* since x x x?* = x? = 1 in GF(28)

(Fermat's little theorem)
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Algebraic Description of SUB BYTES (2) www.tugraz.at

1. Interpret input

2. Calculate inverse

3. Transform inverse

2. Calculate multiplicative inverse of x in GF(28) 4. Interpret result

e x!is calculated, e.g., via x®>* since x x x?* = x? = 1 in GF(28)
(Fermat's little theorem)
e x?** could be calculated via square & multiply in GF(28)...
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Algebraic Description of SUB BYTES (2) www.tugraz.at

1. Interpret input

2. Calculate inverse

3. Transform inverse

2. Calculate multiplicative inverse of x in GF(28) 4. Interpret result

e x!is calculated, e.g., via x®>* since x x x?* = x? = 1 in GF(28)
(Fermat's little theorem)

e x?** could be calculated via square & multiply in GF(28)...

e Alternative more efficient methods were extensively studied...
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Algebraic Description of SUB BYTES www.tugraz.at

3. Transform the inverse using an affine transformation L. Interpret input

2. Calculate inverse

S - - - - ~ - | 3. Transform inverse

X 1000111 1|([x L e———
x1 1100011 1|]|x 1
X2 1110001 1|]|x 0
x3] /111100 0 1f|xs 0
X4_11111000><4+0
X5 0111110 0flxs 1
X6 0011111 0]||x 1
| X7 0001111 1] ([x]| |0
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Algebraic Description of SUB BYTES www.tugraz.at

1. Interpret input

2. Calculate inverse
3. Transform inverse

4. Interpret result

4. Interpret resulting polynomial as 8-bit output

e x=x° -+ x3
e Output (hex): 0x28
e Output (bin): 0b00101000
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Boyar-Peralta Sbox www.tugraz.at

e Primarily used for software implementations (and in Task 3)
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Boyar-Peralta Sbox www.tugraz.at

e Primarily used for software implementations (and in Task 3)

e Bitwise description

Rishub Nagpal — IAIK — Graz University of Technology



Boyar-Peralta Sbox www.tugraz.at

e Primarily used for software implementations (and in Task 3)

e Bitwise description
e Consists of three layers:

e Top Linear Layer
e Middle Non-Linear Layer
e Bottom Linear Layer
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Boyar-Peralta Sbox - Top Linear Layer s

. t1=u0Pu3 t10=t6Dt7 t19=t7Pt18
u0=input [0]

. t2=u0Pub t1l=uldub t20=t1Pt19
ul=input[1]

. t3=u0hub t12=u26pub t21=u6hu7
u2=input [2]

. t4=u3Pub t13=t3Dt4 t22=t7Pt21
u3=input [3]

. t5=u4Pub t14=t6Pt1l t23=t2Pt22
u4=input [4]

. t6=t1Ptb t15=t5dt11 t24=t2Pt10
ub=input [5]

. t7=uld®u2 t16=t5dt12 £25=t200t17
ub=input [6]

. t8=u7Dt6 t17=t9Pt16 t26=t3Pt16
u7=input [7]

t9=u7Pt7 t18=u3Pu7 t27=t1Pt12
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Boyar-Peralta Sbox - Middle Non-Linear Layer

www.tugraz.at

ml=t13Xxt6
m2=t23xt8
m3=t14Pm1l
m4=t19Xu7
m5=m4Pm1l
mé=t3xt16
m7=t22xt9
m8=t26Pm6é
mo9=t20Xxt17
m10=m9Pm6
mil=tixt1b
mi2=t4xt27
m13=m12@mil
mi14=t2xt10
m15=m14Pm11
m16=m3Pm2

ml17=mbpt24

m18=m8@ Em7m

19=m10Fm15

m20=m16PEm13
m21=m17®m15
m22=m18@m13
m23=m196t25
m24=m22Pm23
m25=m22Xm20
m26=m21Pm25
m27=m20Gm21
m28=m23@Em25
m29=m28 Xm27
m30=m26 Xm24
m31=m20Xm23
m32=m27 Xm31

m33=m27®m25
m34=m21 Xm22
m35=m24 Xm34
m36=m24@m25
m37=m21Pm29
m38=m32m33
m39=m23@m30
m40=m35¢m36
m41=m38®Em40
m42=m373m39
m43=m37®m38
m44=m39c@m40
m45=m42@m41
m46=m44 X t6

m47=m40Xt8

m48=m39 Xu7

m49=m43Xt16
m50=m38 X t9
m51=m37 X t17
m52=m42xt15
m53=m45 x t27
m54=m41xt10
m55=m44 xt13
m56=m40 X t23
m57=m39xt19
m58=m43 X t3
m59=m38 X t22
m60=m37 X t20
m61=m42xt1l
m62=m45 x t4
m63=mé41xt2
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Boyar-Peralta Sbox - Bottom Linear Layer

www.tugraz.at

10=m61Pm62
11=m50Pmb6
12=m46Pm48
13=m47@>mb5
14=m54Pmb8
15=m49&m61
16=m6215
17=m46H13
18=m51Pmb9
19=mb52@mb3
110=m53p14
111=m606p12
112=m48@m51

113=m50610
114=m52Fm61
115=m55p11
116=m56510
117=m57611
118=m58$18
119=m63514
120=10p11
121=11p17
122=13P112
123=118hH12
124=11519
125=163110

126=17®19
127=18110
128=1114114
129=1110117

output [0]=16(5124
output [1]=—1165126
output [2]=-1194128
output [3]=16(121
output [4]=120122
output [6]=1256¢129
output [6]=—113(127
output [7]=—163123
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Boyar-Peralta Sbox www.tugraz.at

e |n total 129 instructions
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Boyar-Peralta Sbox www.tugraz.at

e |n total 129 instructions

e ~ 129 x slower than one table lookup

e Performance can be improved via bitslicing (Task 3)

e Convert 4x4 byte state into 8x16-bit state
e First 16-bit reg holds the LSBs of all 16 bytes, etc...
e Calculate Sbox bitwise but with 16-bit registers
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In total 129 instructions

e ~ 129 x slower than one table lookup

Performance can be improved via bitslicing (Task 3)
e Convert 4x4 byte state into 8x16-bit state
e First 16-bit reg holds the LSBs of all 16 bytes, etc...
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Boyar-Peralta Sbox www.tugraz.at

In total 129 instructions

e ~ 129 x slower than one table lookup

Performance can be improved via bitslicing (Task 3)
e Convert 4x4 byte state into 8x16-bit state
e First 16-bit reg holds the LSBs of all 16 bytes, etc...
e Calculate Sbox bitwise but with 16-bit registers

Still &~ 8 x slower than lookup tables

e AES was never meant to be used that way, but we have to...
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Masking Boyar-Peralta Sbox www.tugraz.at

e Sbox only consists of: @, x, = in GF(2), hence XOR, AND, NOT
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e Sbox only consists of: @, x, = in GF(2), hence XOR, AND, NOT
e Masking & and — is easy:

e Duplicate @ and perform them on both shares
e —is equal to @ 1 thus only performed on one share
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Masking Boyar-Peralta Sbox www.tugraz.at

e Sbox only consists of: @, x, = in GF(2), hence XOR, AND, NOT
e Masking & and — is easy:

e Duplicate @ and perform them on both shares
e —is equal to @ 1 thus only performed on one share

e Remaining problem: Masking x (AND-gate)
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Notes regarding task 3




What to do? www.tugraz.at

e Your task: implement a masked AES.

e Send key shares (always fresh).
e Do the masked computation (ISW).

e Keep it simple, no premature optimization!

e Ensure that you get the correct values at the end.
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A few tricks: www.tugraz.at

Masking PRNG
e No need for cryptographically-secure PRNG.

e Can be fairly simple, e.g. Linear congruential generator (LCG). Use fresh seeds.

e __attribute__ ((noinline)) “hides” the content of a function to the optimizer
(write bitwise AND, XOR, NOT functions. .. ).

If you want to avoid transitions (optional):

e Gadgets as functions with an inline assembly blocks.
e Gadget functions takes pointers shares arrays.
e C code calls gadgets, does not touch the shares

To disable masking: set input sharings as (x,0,...,0) and set PRNG output to 0.
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Thank you!

Questions:
rishub.nagpal@iaik.tugraz.at



Ty,

Masking - Defeating Power Analysis Attacks

Side-Channel Security

Rishub Nagpal
June 6, 2023

IAIK — Graz University of Technology
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