

Masking - Defeating Power Analysis Attacks

Side-Channel Security

Rishub Nagpal

June 6, 2023

IAIK - Graz University of Technology

Recap

Masking an algorithm

Inputs sharing

Masking a circuit

Unmask the result

Masking in practice: Hardware implementations

Masking in practice: Software implementations

Masking AES

Notes regarding task 3

Recap

We want to...

- Operate on randomized intermediate values
- But still require correct algorithm output

- Compute f on input x and secret s...
 - But avoid using s directly

$$f(x,s)=y$$

- Compute f on input x and secret s...
 - But avoid using s directly
- Idea: Split s into e.g. 3 shares s_1 , s_2 , s_3 such that:

•
$$s = s_1 \circ s_2 \circ s_3$$

- Individual shares do not reveal s
- Each 2-combination of shares does not reveal s
- The computed y_1 , y_2 , y_3 can be combined to y

$$f(x,s)=y$$

$$f(x_1, s_1) = y_1$$

$$f(x_2,s_2)=y_2$$

$$f(x_3,s_3)=y_3$$

$$y = y_1 \circ y_2 \circ y_3$$

- Compute f on input x and secret s...
 - But avoid using s directly
- Idea: Split s into e.g. 3 shares s_1 , s_2 , s_3 such that:

$$\bullet \ \ s=s_1\circ s_2\circ s_3$$

- Each 2-combination of shares does not reveal s
- The computed y_1 , y_2 , y_3 can be combined to y
- For technical reasons:
 - Split x into 3 shares x_1, x_2, x_3 as well

$$f(x,s)=y$$

$$f(x_1, s_1) = y_1$$

$$f(x_2,s_2)=y_2$$

$$f(x_3,s_3)=y_3$$

$$y = y_1 \circ y_2 \circ y_3$$

- Application to crypto operations:
 - Split key k into k_1 , k_2 , k_3
 - Split plaintext x into x₁, x₂, x₃
 - Compute ciphertext $y = y_1 \circ y_2 \circ y_3$
 - (Use new shares for each encryption!)

• We do secret sharing on one device and multiple shares of the key $k: k_1, k_2, k_3 \rightarrow$

Masking an algorithm

- 1. Write your computation an algebraic circuit.
- 2. Share the inputs.
- 3. Implement the circuit, replacing gates with masked gadgets.
- 4. Unmask the result.

Masking an algorithm

Inputs sharing

Input: x.

- 1: $x_0 \leftarrow x$
- 2: **for** i = 1 to d 1 **do**
- 3: $x_i \stackrel{\$}{\leftarrow} \mathbb{F}_2$
- 4: $x_0 \leftarrow x \oplus \bigoplus_{i=1}^{d-1} x_i$

Output: $(x_0, ..., x_{d-1})$.

If x is sensitive, run ahead of time.

Input: $(x_0, ..., x_{d-1})$.

- 1: **for** i = 1 to d 1 **do**
- 2: $r_i \stackrel{\$}{\leftarrow} \mathbb{F}_2$
- 3: $r_0 \leftarrow \bigoplus_{i=1}^{d-1} r_i$
- 4: **for** i = 0 to d 1 **do**
- 5: $y_i \leftarrow x_i \oplus r_i$

Output: $(y_0, ..., y_{d-1})$.

Masking an algorithm

Masking a circuit

Input:
$$(x_0, \ldots, x_{d-1}, (y_0, \ldots, y_{d-1}).$$

- 1: **for** i = 0 to d 1 **do**
- 2: $z_i \leftarrow x_i \oplus y_i$

Output: $(z_0, ..., z_{d-1})$.

Input: $(x_0, ..., x_{d-1})$

1: $y_0 \leftarrow \neg x_0$

2: **for** i = 1 to d - 1 **do**

3: $y_i \leftarrow x_i$

Output: $(y_0, ..., y_{d-1})$.

Masked AND Gate: ISW multiplication

```
Input: (x_0, \ldots, x_{d-1}, (y_0, \ldots, y_{d-1}).
 1: for i = 0 to d - 1 do
 2: for i = i + 1 to d - 1 do
      r_{ii} \stackrel{\$}{\leftarrow} \mathbb{F}_2, r_{ii} \leftarrow r_{ii}
 4: for i = 0 to d - 1 do
      for i = 0 to d - 1 do
 6:
      p_{ii} \leftarrow x_i \odot y_i
 7: if i \neq j then
 8: t_{ii} \leftarrow p_{ii} \oplus r_{ii}
 9:
      else
10:
           t_{ii} \leftarrow p_{ii}
11: for i = 0 to d - 1 do
12: z_i = \bigoplus_{j=0}^{d-1} t_{ij}
Output: (z_0, ..., z_{d-1}).
```

Other 2-input gates: NAND, OR, NOR?

Other 2-input gates: NAND, OR, NOR? De Morgan laws

Other 2-input gates: NAND, OR, NOR? De Morgan laws

More than 2 inputs?

Other 2-input gates: NAND, OR, NOR? De Morgan laws

More than 2 inputs? Why not? Challenging to make efficient.

What happens when we connect gadgets together in a larger circuit?

Are we still "secure"?

What happens when we connect gadgets together in a larger circuit?

Are we still "secure" ?

Masking security: *t*-probing model:

A circuit is t-probing secure if any observation of t wires in the circuit is independent of the secret (unmasked) inputs.

Masking an algorithm

Unmask the result

XOR shares together:)

Other masking approaches

- Arithmetic masking in \mathbb{F}_{2^n} , \mathbb{Z}_n
- Table-based masking
- Threshold implementations
- Code-based masking

Other security models:

- region probing model
- random probing model
- noise leakage model

Masking in practice: Hardware

implementations

- Value overwriting: load x_0 then x_1 .
- Transition leakage $\sim x_0 \oplus x_1$.
- To be avoided! → Hardwired "domains".
- In HW multiple operations are performed in a single clock cycle
- Logic gates cause a certain delay of the signal
- Propagation of signals in a combinatorial logic can lead to "glitches"
 - Ephemeral incorrect computations
 - Leakage

Modelled in the robust t-probing model.

Example: Glitches in first-order ISW AND gadget \rightarrow DOM gadget

Masking in practice: Software

implementations

- If you write C-code:
 - Compilers can reorder instructions as long as logic is the same.
 - Compilers can change logic as long as result is the same.
 - Write assembly instead.

- If you write C-code:
 - Compilers can reorder instructions as long as logic is the same.
 - Compilers can change logic as long as result is the same.
 - Write assembly instead.
- A processor is still hardware...
 - Transitions:

STORE R1 x0

STORE R1 x1

- If you write C-code:
 - Compilers can reorder instructions as long as logic is the same.
 - Compilers can change logic as long as result is the same.
 - Write assembly instead.
- A processor is still hardware...
 - Transitions:

```
STORE R1 x0
```

STORE R1 x1

- Glitches: less of a problem.
- Countermeasures
 - "Lazy engineering": double number of shares.
 - + "Only one share in the processor"
 - ...

• At every point in time during encryption the processed data is random

- At every point in time during encryption the processed data is random
- That data still leaks but has no correlation the original (unmasked) data

- At every point in time during encryption the processed data is random
- That data still leaks but has no correlation the original (unmasked) data
- ◆ First-order power analysis does not work anymore

- At every point in time during encryption the processed data is random
- That data still leaks but has no correlation the original (unmasked) data
- ◆ First-order power analysis does not work anymore
- Attacker could now consider combinations of points in the power trace

- At every point in time during encryption the processed data is random
- That data still leaks but has no correlation the original (unmasked) data
- ⇒ First-order power analysis does not work anymore
- Attacker could now consider combinations of points in the power trace
- How to choose the masking order? Depends on noise, etc.
 - Security: 1/SNR^d (provable but tricky).
 - Cost: $\mathcal{O}(d^2)$ (for non-linear gadgets).
 - Deployed: 1st and 2nd order masking (?).
 - Practically-relevant order increase (stronger attacks, PQ Crypto).

Masking AES

- AES consists of iterative application of 4 functions
 - In case of AES-128 we have 10 (+1 initial) rounds
 - Initial/final rounds are smaller

- AES consists of iterative application of 4 functions
 - In case of AES-128 we have 10 (+1 initial) rounds
 - Initial/final rounds are smaller
- Identify linear/non-linear functions

- AES consists of iterative application of 4 functions
 - In case of AES-128 we have 10 (+1 initial) rounds
 - Initial/final rounds are smaller
- Identify linear/non-linear functions
- Split computation into shares accordingly
 - XOR each byte of P with randomness \rightarrow P1, P2
 - Calculate functions on shares
 - ullet Pairwise XOR each byte of C1, C2 ightarrow C

- AES consists of iterative application of 4 functions
 - In case of AES-128 we have 10 (+1 initial) rounds
 - Initial/final rounds are smaller
- Identify linear/non-linear functions
- Split computation into shares accordingly
 - XOR each byte of P with randomness \rightarrow P1, P2
 - Calculate functions on shares
 - ullet Pairwise XOR each byte of C1, C2 ightarrow C
- Done?

- AES consists of iterative application of 4 functions
 - In case of AES-128 we have 10 (+1 initial) rounds
 - Initial/final rounds are smaller
- Identify linear/non-linear functions
- Split computation into shares accordingly
 - XOR each byte of P with randomness \rightarrow P1, P2
 - Calculate functions on shares
 - ullet Pairwise XOR each byte of C1, C2 ightarrow C
- Done?

- Takes two inputs: State & Key
 - State (S1,S2) is already shared, key is not
 - XOR-ing key to both shares cancels out!

•
$$C_1 = S_1 \oplus K$$

 $C_2 = S_2 \oplus K$
 $C = C_1 \oplus C_2 = (S_1 \oplus K) \oplus (S_2 \oplus K) = S_1 \oplus S_2$

- Takes two inputs: State & Key
 - State (S1,S2) is already shared, key is not
 - XOR-ing key to both shares cancels out!

•
$$C_1 = S_1 \oplus K$$

 $C_2 = S_2 \oplus K$
 $C = C_1 \oplus C_2 = (S_1 \oplus K) \oplus (S_2 \oplus K) = S_1 \oplus S_2$

- Solution 1: XOR key only to one share
 - Works... but defies the purpose of masking

- Takes two inputs: State & Key
 - State (S1,S2) is already shared, key is not
 - XOR-ing key to both shares cancels out!

•
$$C_1 = S_1 \oplus K$$

 $C_2 = S_2 \oplus K$
 $C = C_1 \oplus C_2 = (S_1 \oplus K) \oplus (S_2 \oplus K) = S_1 \oplus S_2$

- Solution 1: XOR key only to one share
 - Works... but defies the purpose of masking
- Solution 2: XOR shared key to both shares
 - Actually works
 - Where do we get a shared key?

- Easier way:
 - Precompute all round keys
 - Split them into shares, store them
 - Requires lots of memory (problematic for μ C, ASIC)

- Easier way:
 - Precompute all round keys
 - Split them into shares, store them
 - Requires lots of memory (problematic for μ C, ASIC)
- Harder way:
 - Calculate rounds keys on the fly...

- Operates on the 128-bit key state (4x4 bytes)
- Consists of:
 - ROT WORD (one-byte left circular shift in one 4-byte array)
 - SUB WORD (SUB BYTES applied to one 4-byte array)
 - RCON (XOR of 4-byte round constant)

- We know how to:
 - Split inputs into shares
 - Calculate linear functions
 - Handle keys
 - Recover output

- We know how to:
 - Split inputs into shares
 - Calculate linear functions
 - Handle keys
 - Recover output
- Remaining:
 - Calculate non-linear functions

• AES would be a linear function without SUB BYTES

- AES would be a linear function without SUB BYTES
- Attack:
 - Setup equation system that relates key bits to P and C
 - Collect pairs of P and C
 - Solve system using Gaussian elimination

- Implementation: SUB BYTES (x) = y
 - Table-lookup
 - One byte (8-bits) input/output
 - Performed for each byte of the state


```
| 63 7c 77 7b f2 6b 6f c5 30 01 67 2b fe d7 ab 76
    ca 82 c9 7d fa 59 47 f0 ad d4 a2 af 9c a4 72 c0
2. | b7 fd 93 26 36 3f f7 cc 34 a5 e5 f1 71 d8 31 15
    04 c7 23 c3 18 96 05 9a 07 12 80 e2 eb 27 b2 75
    09 83 2c 1a 1b 6e 5a a0 52 3b d6 b3 29 e3 2f 84
    53 d1 00 ed 20 fc b1 5b 6a cb be 39 4a 4c 58 cf
    d0 ef aa fb 43 4d 33 85 45 f9 02 7f 50 3c 9f a8
7. | 51 a3 40 8f 92 9d 38 f5 bc b6 da 21 10 ff f3 d2
    cd Oc 13 ec 5f 97 44 17 c4 a7 7e 3d 64 5d 19 73
    60 81 4f dc 22 2a 90 88 46 ee b8 14 de 5e 0b db
    e0 32 3a 0a 49 06 24 5c c2 d3 ac 62 91 95 e4 79
b. | e7 c8 37 6d 8d d5 4e a9 6c 56 f4 ea 65 7a ae 08
    ba 78 25 2e 1c a6 b4 c6 e8 dd 74 1f 4b bd 8b 8a
d. | 70 3e b5 66 48 03 f6 0e 61 35 57 b9 86 c1 1d 9e
    e1 f8 98 11 69 d9 8e 94 9b 1e 87 e9 ce 55 28 df
f. | 8c al 89 0d bf e6 42 68 41 99 2d 0f b0 54 bb 16
```

1.0.1.2.3.4.5.6.7.8.9.a.b.c.d.e.f

• Desired behavior:

$$\mathsf{x}=\mathsf{x}_1\oplus\mathsf{x}_2$$

SUB BYTES
$$(x_1, x_2) = (y_1, y_2)$$

$$y=y_1\oplus y_2$$

- Fix one share, precompute lookup table for the other share
- This approach is not so popular anymore...
 - Requires pre-calculation of 16 tables each round
 - Memory demanding

• Desired behavior:

$$\begin{aligned} x &= x_1 \oplus x_2 \\ \text{SUB BYTES}(x_1, \, x_2) &= (y_1, \, y_2) \\ y &= y_1 \oplus y_2 \end{aligned}$$

- Find out algebraic description of SUB BYTES
- Implement it using ordinary mathematical operations
- Mask those...

1. Interpret 8-bit input as polynomial over $\mathsf{GF}(2)$

- 1. Interpret 8-bit input as polynomial over GF(2)
- 2. Calculate its multiplicative inverse in $\mathsf{GF}(2^8)$

- 1. Interpret 8-bit input as polynomial over GF(2)
- 2. Calculate its multiplicative inverse in GF(2⁸)
- 3. Transform the inverse using an affine transformation

- 1. Interpret 8-bit input as polynomial over GF(2)
- 2. Calculate its multiplicative inverse in $\mathsf{GF}(2^8)$
- 3. Transform the inverse using an affine transformation
- 4. Interpret resulting polynomial as 8-bit output

- 1. Interpret 8-bit input as polynomial over GF(2)
 - GF(2) = Galois Field(2) = Finite Field with two elements (0,1)

1. Interpret input

- 2. Calculate inverse
- 3. Transform inverse
- 4. Interpret result

- 1. Interpret 8-bit input as polynomial over GF(2)
 - GF(2) = Galois Field(2) = Finite Field with two elements (0,1)
 - Input (hex): 0xee
 - Input (bin): 0b11101110

1. Interpret input

- 2. Calculate inverse
- 3. Transform inverse
- 4. Interpret result

- 1. Interpret 8-bit input as polynomial over GF(2)
 - GF(2) = Galois Field(2) = Finite Field with two elements (0,1)
 - Input (hex): 0xee
 - Input (bin): 0b11101110
 - $1x^7 + 1x^6 + 1x^5 + 0x^4 + 1x^3 + 1x^2 + 1x + 0$

1. Interpret input

- 2. Calculate inverse
- 3. Transform inverse
- 4. Interpret result

- 1. Interpret 8-bit input as polynomial over GF(2)
 - GF(2) = Galois Field(2) = Finite Field with two elements (0,1)
 - Input (hex): 0xee
 - Input (bin): 0b11101110
 - $1x^7 + 1x^6 + 1x^5 + 0x^4 + 1x^3 + 1x^2 + 1x + 0$
 - $\mathbf{x} = x^7 + x^6 + x^5 + x^3 + x^2 + x$

1. Interpret input

- 2. Calculate inverse
- 3. Transform inverse
- 4. Interpret result

- 2. Calculate multiplicative inverse of \mathbf{x} in $GF(2^8)$
 - GF(2⁸) = Finite Field with 256 elements (degree 7 polynomials, binary coefficients)

- 1. Interpret input
- 2. Calculate inverse
- 3. Transform inverse
- 4. Interpret result

- 2. Calculate multiplicative inverse of \mathbf{x} in $GF(2^8)$
 - GF(2⁸) = Finite Field with 256 elements (degree 7 polynomials, binary coefficients)
 - Multiplicative inverse \mathbf{x}^{-1} satisfies: $\mathbf{x} \times \mathbf{x}^{-1} = 1$

- 1. Interpret input
- 2. Calculate inverse
- 3. Transform inverse
- 4. Interpret result

- 1. Interpret input
- 2. Calculate inverse
- 3. Transform inverse
- 4. Interpret result

- 2. Calculate multiplicative inverse of \mathbf{x} in $GF(2^8)$
 - GF(2⁸) = Finite Field with 256 elements (degree 7 polynomials, binary coefficients)
 - Multiplicative inverse \mathbf{x}^{-1} satisfies: $\mathbf{x} \times \mathbf{x}^{-1} = 1$
 - One small problem: 0 has no inverse, hence we simply map 0 to 0

- 1. Interpret input
- 2. Calculate inverse
- 3. Transform inverse
- 4. Interpret result

- 2. Calculate multiplicative inverse of \mathbf{x} in $GF(2^8)$
 - \mathbf{x}^{-1} is calculated, e.g., via \mathbf{x}^{254} since $\mathbf{x} \times \mathbf{x}^{254} = \mathbf{x}^{255} = 1$ in GF(2⁸) (Fermat's little theorem)

- 1. Interpret input
- 2. Calculate inverse
- 3. Transform inverse
- 4. Interpret result

- 2. Calculate multiplicative inverse of ${\bf x}$ in ${\sf GF}(2^8)$
 - \mathbf{x}^{-1} is calculated, e.g., via \mathbf{x}^{254} since $\mathbf{x} \times \mathbf{x}^{254} = \mathbf{x}^{255} = 1$ in $GF(2^8)$ (Fermat's little theorem)
 - x²⁵⁴ could be calculated via square & multiply in GF(2⁸)...

2. Calculate multiplicative inverse of \mathbf{x} in $GF(2^8)$

- 1. Interpret input
- 2. Calculate inverse
- 3. Transform inverse
- 4. Interpret result
- \mathbf{x}^{-1} is calculated, e.g., via \mathbf{x}^{254} since $\mathbf{x} \times \mathbf{x}^{254} = \mathbf{x}^{255} = 1$ in GF(2⁸) (Fermat's little theorem)
- x²⁵⁴ could be calculated via square & multiply in GF(2⁸)...
- Alternative more efficient methods were extensively studied...

3. Transform the inverse using an affine transformation

$$\begin{bmatrix} x_0 \\ x_1 \\ x_2 \\ x_3 \\ x_4 \\ x_5 \\ x_6 \\ x_7 \end{bmatrix} = \begin{bmatrix} 1 & 0 & 0 & 0 & 1 & 1 & 1 & 1 \\ 1 & 1 & 0 & 0 & 0 & 1 & 1 & 1 \\ 1 & 1 & 1 & 0 & 0 & 0 & 1 & 1 \\ 1 & 1 & 1 & 1 & 0 & 0 & 0 & 1 \\ 1 & 1 & 1 & 1 & 1 & 0 & 0 & 0 \\ 0 & 1 & 1 & 1 & 1 & 1 & 0 & 0 \\ 0 & 0 & 1 & 1 & 1 & 1 & 1 & 0 \\ 0 & 0 & 0 & 1 & 1 & 1 & 1 & 1 \end{bmatrix} \begin{bmatrix} x_0 \\ x_1 \\ x_2 \\ x_3 \\ x_4 \\ x_5 \\ x_6 \\ x_7 \end{bmatrix} + \begin{bmatrix} 1 \\ 1 \\ 2 \\ 2 \\ 3 \\ 3 \\ 3 \\ 4 \\ 4 \\ 5 \\ 6 \\ 3 \\ 7 \end{bmatrix}$$

- 1. Interpret input
- Calculate inverse
 Transform inverse
- 4. Interpret result

- 4. Interpret resulting polynomial as 8-bit output
 - $x = x^5 + x^3$
 - Output (hex): 0x28
 - Output (bin): 0b00101000

- 1. Interpret input
- 2. Calculate inverse
- 3. Transform inverse
- 4. Interpret result

• Primarily used for software implementations (and in Task 3)

- Primarily used for software implementations (and in Task 3)
- Bitwise description

- Primarily used for software implementations (and in Task 3)
- Bitwise description
- Consists of three layers:
 - Top Linear Layer
 - Middle Non-Linear Layer
 - Bottom Linear Layer

<pre>u0=input[0] u1=input[1] u2=input[2] u3=input[3] u4=input[4] u5=input[5] u6=input[6] u7=input[7]</pre>	t1=u0⊕u3	t10=t6⊕t7	t19=t7⊕t18
	t2=u0⊕u5	t11=u1⊕u5	t20=t1⊕t19
	t3=u0⊕u6	t12=u2⊕u5	t21=u6⊕u7
	t4=u3⊕u5	t13=t3⊕t4	t22=t7⊕t21
	t5=u4⊕u6	t14=t6⊕t11	t23=t2⊕t22
	t6=t1⊕t5	t15=t5⊕t11	t24=t2⊕t10
	t7=u1⊕u2	t16=t5⊕t12	t25=t20⊕t17
	t8=u7⊕t6	t17=t9⊕t16	t26=t3⊕t16
	t9=u7⊕t7	t18=u3⊕u7	t27=t1⊕t12

$m1=t13\times t6$	$m17=m5 \oplus t24$	$m33=m27 \oplus m25$	$m49=m43\times t16$
$m2=t23\times t8$	$m18=m8\oplus m7m$	$m34=m21\times m22$	$m50=m38\times t9$
$m3=t14 \oplus m1$	19=m10⊕m15	$m35=m24\times m34$	$m51=m37\times t17$
$m4=t19\times u7$	$m20=m16 \oplus m13$	$m36=m24\oplus m25$	$m52=m42\times t15$
$m5=m4\oplus m1$	$m21=m17 \oplus m15$	m37=m21⊕m29	$m53=m45\times t27$
$m6=t3\times t16$	$m22=m18 \oplus m13$	$m38=m32\oplus m33$	$m54=m41\times t10$
$m7=t22\times t9$	$m23=m19 \oplus t25$	m39=m23⊕m30	$m55=m44\times t13$
$m8=t26\oplus m6$	$m24=m22 \oplus m23$	$m40=m35\oplus m36$	$m56=m40\times t23$
$m9=t20\times t17$	$m25=m22\times m20$	$m41=m38\oplus m40$	$m57=m39\times t19$
$m10=m9\oplus m6$	$m26=m21\oplus m25$	$m42=m37\oplus m39$	$m58=m43\times t3$
$m11=t1\times t15$	$m27=m20 \oplus m21$	m43=m37⊕m38	$m59=m38\times t22$
$\mathtt{m12} = \mathtt{t4} \times \mathtt{t27}$	m28=m23⊕m25	$m44=m39\oplus m40$	$m60=m37\times t20$
$m13=m12 \oplus m11$	$m29=m28\times m27$	$\mathtt{m45} \texttt{=} \mathtt{m42} \oplus \mathtt{m41}$	$m61=m42\times t1$
$m14=t2\times t10$	$m30=m26\times m24$	$m46=m44\times t6$	$m62=m45\times t4$
$m15=m14\oplus m11$	$m31=m20\times m23$	$m47=m40\times t8$	$m63=m41\times t2$
m16=m3⊕m2	$m32=m27\times m31$	$m48=m39\times u7$	

10=m61⊕m62 11=m50⊕m56	113=m50⊕10 114=m52⊕m61	126=17⊕19
12=m46⊕m48 13=m47⊕m55 14=m54⊕m58	115=m55⊕11 116=m56⊕10 117=m57⊕11	127=18⊕110 128=111⊕114 129=111⊕11
15=m49⊕m61 16=m62⊕15 17=m46⊕13	118=m58⊕18 119=m63⊕14 120=10⊕11	
17-m40-13 18=m51-m59 19=m52-m53	121=11⊕17 122=13⊕112	
110=m53⊕14 111=m60⊕12 112=m48⊕m51	$123=118 \oplus 12$ $124=115 \oplus 19$ $125=16 \oplus 110$	

output $[0]=16\oplus 124$ output $[1]=-116\oplus 126$ output $[2]=-119\oplus 128$ output $[3]=16\oplus 121$ output $[4]=120\oplus 122$ output $[5]=125\oplus 129$ output $[6]=-113\oplus 127$ output $[7]=-16\oplus 123$ • In total 129 instructions

- In total 129 instructions
- $\bullet~\approx 129~\times$ slower than one table lookup

- In total 129 instructions
- ullet pprox 129 imes slower than one table lookup
- Performance can be improved via bitslicing (Task 3)
 - Convert 4×4 byte state into 8×16-bit state
 - First 16-bit reg holds the LSBs of all 16 bytes, etc...
 - Calculate Sbox bitwise but with 16-bit registers

- In total 129 instructions
- ullet pprox 129 imes slower than one table lookup
- Performance can be improved via bitslicing (Task 3)
 - Convert 4×4 byte state into 8×16-bit state
 - First 16-bit reg holds the LSBs of all 16 bytes, etc...
 - Calculate Sbox bitwise but with 16-bit registers
- Still \approx 8 \times slower than lookup tables

- In total 129 instructions
- ullet pprox 129 imes slower than one table lookup
- Performance can be improved via bitslicing (Task 3)
 - Convert 4×4 byte state into 8×16-bit state
 - First 16-bit reg holds the LSBs of all 16 bytes, etc...
 - Calculate Sbox bitwise but with 16-bit registers
- Still \approx 8 \times slower than lookup tables
- AES was never meant to be used that way, but we have to...

• Sbox only consists of: \oplus , \times , \neg in GF(2), hence XOR, AND, NOT

- Sbox only consists of: ⊕, ×, ¬ in GF(2), hence XOR, AND, NOT
- Masking \oplus and \neg is easy:
 - Duplicate ⊕ and perform them on both shares
 - $\bullet \ \neg$ is equal to $\oplus \ 1$ thus only performed on one share

- Sbox only consists of: ⊕, ×, ¬ in GF(2), hence XOR, AND, NOT
- Masking \oplus and \neg is easy:
 - Duplicate ⊕ and perform them on both shares
 - ullet \neg is equal to \oplus 1 thus only performed on one share
- Remaining problem: Masking × (AND-gate)

Notes regarding task 3

- Your task: implement a masked AES.
 - Send key shares (always fresh).
 - Do the masked computation (ISW).
- Keep it simple, no premature optimization!
- Ensure that you get the correct values at the end.

- Masking PRNG
 - No need for cryptographically-secure PRNG.
 - Can be fairly simple, e.g. Linear congruential generator (LCG). Use fresh seeds.
- __attribute__ ((noinline)) "hides" the content of a function to the optimizer (write bitwise AND, XOR, NOT functions...).
- If you want to avoid transitions (optional):
 - Gadgets as functions with an inline assembly blocks.
 - Gadget functions takes pointers shares arrays.
 - C code calls gadgets, does not touch the shares
- To disable masking: set input sharings as (x, 0, ..., 0) and set PRNG output to 0.

Thank you!

rishub.nagpal@iaik.tugraz.at

Questions:

Masking - Defeating Power Analysis Attacks

Side-Channel Security

Rishub Nagpal

June 6, 2023

IAIK - Graz University of Technology