
Operating Systems

Introduction, Processes, Threads

Daniel Gruss

2023-10-03



Table of contents

1. Basics

2. Process and Thread Fundamentals

3. Context Switches

4. Process and Thread Organization

1





software - manage - resources - users - applications. reliability - security - responsiveness - portability.



Basics



What is an Operating System
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HW provides processors, memory and a set of devices for storing data and communicating with the outside world. the HW also provides primitives that the operating system can use for fault isolation and synchronization. 



What is an Operating System
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The OS runs as the lowest layer of software on that computer. It contains both a device specific layer for managing hte multitude of hardware devoces and a set of device independent services provided to applications. THink: services! Since operating sytem must isolate malicious and buggy aps from ohter apps or the OS, much of the OS runs in a separate exec environment protected from application code



What is an Operating System

4



apps run in an exec context provided by the kernel. This is much more than a simple abstraction top of hw devices: apps execute in a virtual environment that is more constraint (to prevent harm), more powerful (to mask HW limitations) and more useful (via common services) than the underlying hardware



What is an Operating System

• Run on all sorts of devices:

• Servers, Desktops, Notebooks

• Tablets, Smartphones

• Routers, Switches, Displays

• Door Locks, Washing Machines, Toasters

• Cars, Airplanes

• ....

• We focus on general purpose operating systems
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Operating System Roles

• Referee

• Illusionist

• Glue
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OS Design Patterns I

• OS challenges are not unique - apply to many different computing domains

• many complex software systems

• have multiple users

• run programs written by third-party developers

• need to coordinate simultaneous activities
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OS Design Patterns II

Challenges:

• resource allocation

• fault isolation

• communication

• abstraction

• how to provide a set of common services
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Design Criteria for OS

Design Criteria for Operating Systems

• Reliability and Availability

• Security

• Portability

• Performance

• Adoption
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Reliability and Availability (does the operating system do what we want), Security (can it be corrupted by an attacker), Portability (is it easy to move to new HW platforms), Performance (UI responsive, OS too much overhead), Adoption (how many users...) 
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History

The first computers were so called “mainframes” that had no operating systems.
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Multics

• first collection of compatible utility programs (Multics)

• assemblers, compilers, debugging tools

• standard routines for input and output

• buffers to “spool” printer and tape output

• utilities designed to load sequence (or “batch”) of programs into memory

• automate some of the reconfiguration performed by human operators
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UNIX et al.

• Multics never gained critical mass in the market place

• Ken Thompson and Dennis Ritchie started working on an OS for microcomputers:

UNIX

• by programmers - for programmers

• originally in assembly language

• rewritten in C

• portable operating system!

12



Ritchie also developed the C programming language.



UNIX et al.

• Multics never gained critical mass in the market place

• Ken Thompson and Dennis Ritchie started working on an OS for microcomputers:

UNIX

• by programmers - for programmers

• originally in assembly language

• rewritten in C

• portable operating system!

12



Ritchie also developed the C programming language.



UNIX et al.

• Multics never gained critical mass in the market place

• Ken Thompson and Dennis Ritchie started working on an OS for microcomputers:

UNIX

• by programmers - for programmers

• originally in assembly language

• rewritten in C

• portable operating system!

12



Ritchie also developed the C programming language.



UNIX et al.

• Multics never gained critical mass in the market place

• Ken Thompson and Dennis Ritchie started working on an OS for microcomputers:

UNIX

• by programmers - for programmers

• originally in assembly language

• rewritten in C

• portable operating system!

12



Ritchie also developed the C programming language.



UNIX et al.

• Multics never gained critical mass in the market place

• Ken Thompson and Dennis Ritchie started working on an OS for microcomputers:

UNIX

• by programmers - for programmers

• originally in assembly language

• rewritten in C

• portable operating system!

12



Ritchie also developed the C programming language.



UNIX et al.

• Multics never gained critical mass in the market place

• Ken Thompson and Dennis Ritchie started working on an OS for microcomputers:

UNIX

• by programmers - for programmers

• originally in assembly language

• rewritten in C

• portable operating system!

12



Ritchie also developed the C programming language.



Evolution of Operating Systems

Phase Idea

Open shop operating systems

Batch processing tape batching, first-in/first -out scheduling

Multiprogramming processor multiplexing, atomic operations, demand paging,

I/O spooling, priority scheduling, remote job entry

Timesharing simultaneous user interactions, on-line file systems

Concurrent programming hierarchical systems, extensible kernels, parallel programming

Personal Computing graphical user interface

Distributed Systems remote servers

13



Personal Computing

1968: First devices named “personal computer” (actually a calculator)
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PCs

1973: Xerox Alto, first computer with mouse, desktop, and GUI
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PC Operating Systems

• Different requirements: only one user

• CP/M, DOS, Apple-DOS

• Windows

• OS-2, Windows-XP, OS-X, Linux....
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Process and Thread Fundamentals



Program, Process, Thread

• A program: a binary file containing code and data

• actions: write, compile, install, load

• resources: file

• A thread: an execution context

• actions: run, interrupt, stop

• resources: CPU time, stack, registers

• A process: a container for threads and memory contents of a program

• actions: create, start, terminate

• resources: threads, memory, program
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Abstractions

• Process: abstraction of a computer

• File: abstraction of a disk or a device

• Socket: abstraction of a network connection

• Window: abstraction of a display

→ Abstractions hide many details but provide the required capabilities

18
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CPU vs. Process
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CPU vs. Process
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Processes

Implemented by the kernel

21



Implementation?

• We have “one hardware”

• We have many “processes”

• How do we solve this?
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The Process Abstraction
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Program, Process, Thread

• Once a program is loaded in memory, OS can start it(s first thread) by

• setting up a stack and setting the stack pointer and

• setting the instruction pointer (of the first thread) to the programs first instruction

• Process is an instance of a program

• Kernel must organize running code of multiple processes

• Must be able to switch from one process to another

• OS keeps a list of process data structure (aka the “PCB”)
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Process List (aka PCB)

Process list stores

• where program is loaded in memory

• where image is on disk

• which user asked to execute

• what privileges the process has

• etc.

• Process ID

• User ID

• Process status

• Scheduling information

• I/O resources

Process can have multiple threads

• same program code and data

• own stack

• own registers (including instruction pointer)
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Process Protection Mechanisms



How can it be safe to run untrusted software on your hardware?

Challenges:

• Threads of a process run code

• What code?

• Do we trust that code?

• Maybe buggy?

Malicious?

• We want to give the program restricted privileges

• How can we do that?

26
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Privileged and unprivileged instructions

• Most instructions cannot do any harm

• Some instructions can

asm("cli");

asm("hlt");

27



Privileged and unprivileged instructions

• Most instructions cannot do any harm

• Some instructions can

asm("cli");

asm("hlt");

27



Privileged and unprivileged instructions

• Most instructions cannot do any harm

• Some instructions can

asm("cli");

asm("hlt");

27



Examples for Privileged Instructions (Intel)

• LGDT: Load GDT register

• LLDT: Load LDT register

• LTR: Load task register

• LIDT: Load IDT register

• MOV (control registers): Load and store control registers

• LMSW: Load machine status word

• CLTS: Clear task-switched flag in register CR0

• MOV (debug registers): Load and store debug registers

• INVD: Invalidate cache, without writeback

• WBINVD: Invalidate cache, with writeback

• INVLPG: Invalidate TLB entry

• HLT: Halt processor

• RDMSR: Read Model-Specific Registers

• WRMSR: Write Model-Specific Registers28



Dual-mode operation

• User-mode: limited privileges

• Kernel-mode: complete privileges

Recall: DPL defined in segment descriptor

• User-mode: DPL = 3

• Kernel-mode: DPL = 0

→ hardware-assisted control mechanisms

29
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Hardware Support: Dual-Mode

Kernel Mode: User Mode:
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Hardware Support: Dual-Mode

Kernel Mode:

• OS runs in kernel mode

• Full privileges for hardware
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• Full privileges for hardware

accesses

• Read/write to any memory

• Access to any I/O-device

• Access to all disk content

• Access to all network traffic

User Mode:

• User programs run in user mode

• Limited privileges

• Some instructions and memory regions are

not accessible

• If tried anyway: exception is raised by the

CPU.

• Need something user mode can’t do?

→ “call” operating system for help

→ system call
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Hardware Support: Dual-Mode Implementation

• mode stored in EFLAGS register

• segment descriptors

• paging structures

• . . .
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IA-32 Ring Structure
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How to change from ring to ring . . .

• change from kernel mode (lower level ring) to user mode (higher level ring) not a

problem
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How to change from ring to ring . . .

• change from ring 0 to ring 3 not a problem

• change from ring 3 to ring 0 through controlled procedure

→ Otherwise there would be no protection
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How to change from ring to ring . . .

• change from ring 0 to ring 3 through special return instruction (iret)

• change from ring 3 to ring 0 through controlled procedure

→ Otherwise there would be no protection
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How to change from ring to ring . . .

• change from ring 0 to ring 3 through special return instruction (iret)

• change from ring 3 to ring 0 through int 0x80, sysenter, or syscall

→ Otherwise there would be no protection
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Interrupts

• either generated by the software (e.g. syscall)

• or by the hardware

• timer

• I/O-devices

• exceptions (divide-by-zero, page fault, etc.)
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Interrupts and Stacks

• Interrupts switch stack to a kernel stack

• Why?

• Security and stability

• Who knows where the users SP points

• Maybe SP points to illegal address

• Would raises an page fault exception (in the kernel)

• Some register values are pushed to stack by the CPU during a context switch

• How many stacks do we actually need?

• Do we need multiple stacks for the kernel?
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Stacks
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Stacks
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Context Switches



Threads. Multiple Threads.

• one CPU / core: one active thread at any point in time

• how to switch between threads?

• how do we let a CPU / core execute a different function?

• change the instruction pointer?

how?
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Threads. Multiple Threads.

Changing the instruction pointer

asm("jmp *%[other_thread_function]"

:

: [other_thread_function]"r"(other_thread_function));

does this work? Yes, but . . .

• what if the thread is in another process?

• scheduling thread slices: how do we later restore the state we came from?

• what if we’re coming from kernelspace?
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Context Switch: Old Thread → New Thread

• Caused only by an interrupt → privilege level change

• CPU pushes to stack: ss, rsp, rflags, cs, rip

• Store register values (→ next slide)

• Old thread executes Scheduler (code to switch to a new thread)

• Context switch to a new thread
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Context Switch: Store register values

1. Push all CPU register values on the stack

• No modification of instruction pointer / stack pointer:

• rip and rsp were already pushed to the stack by CPU

2. Pop all CPU register values into a struct

3. Set currentThreadInfo, etc. to kernel thread
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currentThreadRegisters

struct ArchThreadRegisters

{

uint64 rip; // 0

uint64 cs; // 8

uint64 rflags; // 16

uint64 rax; // 24

uint64 rcx; // 32

uint64 rdx; // 40

uint64 rbx; // 48

uint64 rsp; // 56

uint64 rbp; // 64

uint64 rsi; // 72

uint64 rdi; // 80

uint64 r8; // 88

uint64 r9; // 96

uint64 r10; // 104

uint64 r11; // 112

uint64 r12; // 120

uint64 r13; // 128

uint64 r14; // 136

uint64 r15; // 144

uint64 ds; // 152

uint64 es; // 160

uint64 fs; // 168

uint64 gs; // 176

uint64 ss; // 184

uint64 dpl; // 192

uint64 rsp0; // 200

uint64 ss0; // 208

uint64 cr3; // 216

uint32 fpu[28]; // 224

};
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Context Switch: Old Thread → New Thread

1. “Restore” CPU register values

1.1 iretq (interrupt return) expects ss, rsp, rflags, cs, rip on the stack

1.2 iretq pops values from stack into the registers

2. Instruction pointer has a new value, execution continues there
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Context Switch

Looks identical for 64 bits
45



Context Switch: New Thread/First Thread

Act as if:

• Thread was running already

• We are returning from an interrupt
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Context Switch: New Thread/First Thread

Act as if:

• Thread was running already

• We are returning from an interrupt
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Context Switch: New Thread/First Thread

1. Push stored register values to stack (modifies registers)

2. “Restore” CPU register values as before

3. Instruction pointer has a new value, execution continues there
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Context Switches: When and why?

Interrupts:

• clock

• device

• system call (syscall / sysenter / int 0x80)

• cpu fault (trap / interrupt)

• executing privileged instruction

• divide by 0

• integer overflow

• bad memory access
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Process and Thread Organization



Program, Process, Thread

• Program: a binary file containing code and data

• a mold for a process

• Thread: an execution context

• a sequence of instructions

• if part of a process: restricted to the boundaries of a process

• Process: a container for threads and memory contents of a program

• an instance of a program

• restricted to its own boundaries and rights
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Process Resources

A process is a container.

• Process ID

• Filename

• Program file (Loader)

• (Open) file descriptors

• Address space (ArchMemory, CR3 register)

• Accounting

• Threads

• Child processes?
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Thread Resources

A thread is a unit for execution.

• Thread ID

• Thread state (Running, Sleeping, . . . )

• A set of register values (defining the state of the execution of the userspace
thread function)

• Not all registers are different

• Some register values are process-specific and not thread-specific (e.g. CR3)

• A user stack

• A kernel stack (for syscalls)

• A second set of register values for the kernel (for syscalls)
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Process and Thread Interaction

Load program, create process, . . .

• 1 initial thread

• executes the main()-function

• it’s not a “main”-thread

• process may start further threads if required (how?)
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Threads

• “There is no such thing as a thread” at the CPU-level

• As illustrated before: works by creative and clever usage of interrupts

• Threads can be implemented with and without support of the operating system

• Pure Userspace Threading: lightweight, but many drawbacks

• Threads can be implemented with and without support of the CPU (int 0x80

vs. sysenter/syscall)
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Pure Userspace Threads

• Kernel has no concept of threads and no idea they might exist

(that’s how it

started)

• Implement threads in userspace as library

• can be implemented in all operating systems
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Userspace Threads

55



Userspace Threads

• process manages threads

• user-mode-runtime-system in libc!

• function that might block the thread

• call method in libc to check: thread going to block?

• YES: save registers in thread table

• choose other thread ready to run

• load chosen the thread’s registers from thread table

• change stack pointer and instruction pointer (this time jmp)
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Advantages

• Advantages

• no system calls for thread handling

• thread-switches are very fast

• no change of memory configuration when switching threads

• can use specialized scheduling
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Disadvantages

• threads are not allowed to make direct syscalls since they might block

• ... one could make system-calls non-blocking

• ... but since this should work with unchanged (and unaware) OSs...

• sometimes you can find out if a syscall would block

• e.g. select-Systemcall

• before read is called: call select

• should read block: switch threads and check again later

• not very efficient and elegant

• Sometimes not

• Page faults

• if page not in memory, process will block

• if thread has an endless loop and does not free CPU...
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Implementation

Two and a half options:

• Userspace

• Kernelspace

• Mixed
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kernel mode threads

• No runtime system needed

• less code the user can break

• thread management in kernel

• more or less as in userspace

• but: kernel programmers by definition only write safe code

• thread creation and management via syscall

• takes longer than before

• thread-recycling
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Kernel mode threads
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Hybrid solution
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Thread states
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Threads states
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Thread states
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Thread states
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Context Switching
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Process Creation

• at boot time (kernel threads, init processes)

• at request of a user (how?)

• also: start of a scheduled batch job (cronjob, how?)
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Process Creation at request of a user

via Syscall!

• UNIX/Linux: fork (exact copy)

• Windows: CreateProcess (new image)

• SWEB: fork (as soon as you have implemented it)
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What does the fork do?

Check http://pubs.opengroup.org/onlinepubs/9699919799/functions/fork.html!!
73
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Process Creation via fork (on Unix / Linux / SWEB)

http://pubs.opengroup.org/onlinepubs/9699919799/functions/fork.html:

pid_t fork(void);

The fork() function shall create a new process. The new process (child process) shall

be an exact copy of the calling process (parent process) except as detailed below:

• unique PID

• copy of file descriptors

• semaphore state is copied

• shall be created with a single thread. If a multi-threaded process calls fork(), the

new process shall contain a replica of the calling thread and its entire address

space, possibly including the states of mutexes and other resources.

• parent and the child processes shall be capable of executing independently before

either one terminates.

• . . .74
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fork/exec Return Value

http://pubs.opengroup.org/onlinepubs/9699919799/functions/fork.html:

pid_t fork(void);

Upon successful completion, fork() shall return 0 to the child process and shall return

the process ID of the child process to the parent process. Both processes shall continue

to execute from the fork() function. Otherwise, -1 shall be returned to the parent

process, no child process shall be created, and errno shall be set to indicate the error.

75
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Fork

pid_t child_pid;

child_pid = fork();

if (child_pid == -1) {

printf("fork failed\n");

} else if (child_pid == 0) {

printf("i’m the child\n");

} else {

printf("i’m the parent\n");

waitpid(child_pid,0,0); //

wait for child to die

}

• child does not know the parent

• parent knows the child

• parent waits for child to die

(waitpid)
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Process Termination

• Normal exit (return value: zero)

• Error exit (return value: non-zero)

• Fatal error (e.g. segmentation fault)

• Killed by another process
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Process Hierarchies

Some operating systems have hierarchies:

• implicit hierarchy from forking

• process groups in UNIX/Linux

• doesn’t exist in Windows

Implicit parent-child hierarchy on Unix/Linux:

• when parent dies,

all children, grand-children, grand-grand-children, . . . , die aswell

• UNIX/Linux also cheats a bit: parent process typically inherits a processes’

children, etc.
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Process/Thread State

git grep TODO | sort

79



Process/Thread State

git grep TODO | sort

• sort has to wait for input

79



Process/Thread State

git grep TODO | sort

• sort has to wait for input

• what does the sort do in the meantime?

79



Process/Thread State

git grep TODO | sort

• sort has to wait for input

• what does the sort do in the meantime?

• loop and check (busy wait)

79



Process/Thread State

git grep TODO | sort

• sort has to wait for input

• what does the sort do in the meantime?

• loop and check (busy wait)

• sleep and get woken up

79



Process/Thread State

git grep TODO | sort

• sort has to wait for input

• what does the sort do in the meantime?

• loop and check (busy wait)

• sleep and get woken up

• blocking the process makes sense

79



Process/Thread State

git grep TODO | sort

• sort has to wait for input

• what does the sort do in the meantime?

• loop and check (busy wait)

• sleep and get woken up

• blocking the process makes sense

• do we actually block the process?
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Take Aways

• Processes divide resources amongst themselves (except processor time)

• Threads divide processor time amongst themselves (and a few resources)

• Building block of modern multi-threading are context switches

• Operating system creates illusions

• for the hardware: there is only 1 thread and a lot of interrupts

• for the userspace: we can have an arbitrary number of threads
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