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Cloud means Efficiency
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How does the cloud bring effi

Apply OS techniques - Example?

e Processes used to have access to all physical memory — that's not efficient!

— Virtualize memory — processes can share resources of one machine and utilize it better
e Processes need all the same pages — that's not efficient!

— Let them share memory, using COW, page deduplication, etc.
e Processes often cannot do anything but wait — that's not efficient!

— Let other processes run in between

Daniel Gruss







IaaS: VMs, Servers, Storage, Load Balancing, Network, ... 
PaaS: Runtime, Database, Web server, Dev Tools, ... 
SaaS: CRM, Email, virtual desktop, communication, games, ...


Different techniques - similar challenges

e Efficiency
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nt techniques - similar challenges

e Efficiency
e Isolation of tenants (security, reliability, availability)

e Abstraction of hardware
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Virtualization allows to represent resources in a computer in a way they can be used easily

and without the need to know details of their properties
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Virtual Machines (VM)

e Decouple operating system from hardware

e ‘“computer in computer” - implemented in software
e includes devices (network, keyboard, sound...)

e OS in VM “sees” its hardware, irrespective from the actual hardware in use

e OS does not know if HW is concurrently used by other VMS

Daniel Gruss
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Why virtualization

Cheaper hardware: one server for one task was common

most of these servers: idle time 90%

e cost issue:

e support, maintenance
e power consumption (operation, cooling)

e space

Virtualization allows consolidation

e multiple servers on one box

Daniel Gruss
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Better hardware utilization

S

e Lower administration cost

&

long-term operations of older applications

lower down-times

simple migration to more powerful hardware
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Disadvantages

e Performance cost: slower |/O operation
e single point of failure: requires better hardware reliability

e security gets more complex
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Virtualization: Trend 1990s — 2000s

e Virtualization no significant role in internet hosting
often PaaS
Web hosts (FTP access, HTTP website)

Isolation on the OS level (tenants as users)

e no hardware support — expensive + many problems

n Daniel Gruss
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OS-level Virtualization

Para-Virtualization
Full Virtualization

Hardware-Assisted Virtualization
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OS-level Virtualization

e integrated into kernel

e all application software intended to run in a virtual environment get strictly separated
virtual runtime environments (container, jail)

e no separate kernels - only process level virtualization
e can't run other OSes - only for applications

e examples: OpenVZ, Docker, (s)chroot

Daniel Gruss
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e needs to modify guest
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Full Virtualization

OS not aware of being virtualized

no need to adapt guest

reduced performance
e up to 25%

full virtualization of HW required (e.g., emulation via gemu)

e virtual machines not allowed to access physical components
e every physical component has to be virtualized and requires drivers in OS

Daniel Gruss
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Some earlier systems: binary translation

Guest no longer runs in kernel mode (Ring 0)

e parts that require kernel privileges won't run

hypervisor (VMM) changes binaries of guest-OS on the fly

allows supporting any OS

e no need to change source

high performance penalty

Daniel Gruss
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First full x86 virtualization

e hypervisor continuously reads program code before it is executed (pre-scan)

looking for relevant commands

e change of system state
e commands depending on CPU state

sets breakpoint and lets OS run

Daniel Gruss
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Problems virtualizing on 1A-32

@ @ @ e Diverse problems were to be solved when virtualizing on [A-32:

e Ring Problems

@. -@ e Address Space Compression

e Non-Faulting Access to Priv. State
e SYSENTER / SYSEXIT

e Interrupt Virtualization

e Hidden States

Daniel Gruss



Ring Problem 1: which ring

e usually: application run in ring 3, kernel in ring 0
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Ring Problem 1: which ring

e usually: application run in ring 3, kernel in ring 0
e guest may not run in ring 0
e ring de-privileging needed: guest must run in ring > 0

e most often 1 or 3

Daniel Gruss
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Ring Problem 2: aliasing

guest has to run in a ring it has not been developed for

e certain instructions contain privilege level in result (e.g. PUSH CS)

guest OS can find out ring it is running in

may result in diverse problems

Daniel Gruss
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Address Space Compression

e Guest expects to have full address space available

e hypervisor requires part of address space

e control structures for switching between guest and hypervisor

e Access to these areas not allowed for guest. Invokes switch to hypervisor who has to
emulate these accesses

Daniel Gruss
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Non-Faulting Access to Priv. State

e unprivileged software may not access certain elements of the CPU state
e access by guest results in fault: hypervisor can emulate instructions

e |A-32 possesses instructions that do not induce a fault:

e Registers GDTR, IDTR, LDTR and TR are only modifiable in ring 0
e can be executed in any ring without fault (without function)

Daniel Gruss



SYSENTER / SYSEXIT

e special commands for fast syscalls
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SYSENTER / SYSEXIT

e special commands for fast syscalls

e SYSENTER always switches to ring 0
e SYSEXIT can only be executed in ring 0
e ring 1 thus is problematic

e SYSENTER switches to hypervisor — has to emulate
e SYSEXIT switches to hypervisor — has to emulate

Daniel Gruss
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Interrupt Virtualization

e interrupts can be masked (so they do not occur if not welcome)
e controlled by IF-flag in EFLAGS-Register

e Interrupts managed by VM though

e change of IF — fault to hypervisor

e OS do this quite often — performance problem

e forwarding of virtual interrupts must consider IF

Daniel Gruss
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hidden state information

e Not all state-information accessible via registers
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hidden state information

e Not all state-information accessible via registers

e cannot be saved and restored when switching between VMs

Daniel Gruss
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e Two new operating modes:
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ualization hitecture

e Two new operating modes:
e VMX root operation
e for hypervisor
e VMX non-root operation

e controlled by hypervisor
e supports VMs

Both modes have ring 0-3
e guest can run in ring 0

e hypervisor said to be running in “ring -1"

Daniel Gruss



Rings on Intel

Ring 3
Ring 1&2

Device drivers
Applications

Daniel Gruss



VMM Operation

Guest 0 Guest 1

VM Exit VM Entry % Exit

VMXON 4i| VM Monitor p——— VMXOFF
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VMM Transitions

Inactive
Not Current
Clear

Active
Not Current
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e VM entry: root operation — non-root operation
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VM entry: root operation — non-root operation

VM exit: non-root operation — root operation
VMCS: Virtual Machine Control Structure

o Guest-state-area

e Host-state-area

Entry/Exit loads/safes information using the proper area

Daniel Gruss
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e Contains elements comprising the state of the virtual CPU of a VMCS
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VMCS - Guest State Area

Contains elements comprising the state of the virtual CPU of a VMCS
e VM-exit requires loading certain registers (like segment registers, CR3, IRTR...)

GSA contains fields for these registers

GSA contains fields for other information not readable via registers

e e.g. interruptability state

Daniel Gruss



e 16-bits fields.

CopyLeft 2017, @Noteworthy (Intel Manuel of July 2017)







GUEST TE AREA

Selector
GDTR
IDTR

Page-directory-pointer-table entries
Guest interrupt status








HOST STATE AREA

CS Selector
SS Selector
DS Selector
ES Selector
FS Selector

Selector

Selector







VMCS

e Addressed using physical addresses
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VMCS

e Addressed using physical addresses

not part of guest address space

hypervisor may run in different address space as guest (CR3 part of state)

VM-exits leave detailed information on reason for exit in VMCS

e exit reason
e exit qualification

Daniel Gruss



VM-EXIT CONTROL FIELDS

Save debug controls \ Host address space size ‘ Load IA32_PERF_GLOBAL_CTRL
Acknowledge interrupt on exit ‘ Save IA32_PAT ‘ Load IA32_PAT | Save IA32_EFER ‘ Load IA32_EFER
Save VMX preemption timer value Clear IA32_BNDCFGS Conceal VM exits from Intel PT

VM-Exit Controls
for MSRs

VM-EXIT INFORMATION FIELDS

Basic VM-Exit
Information
VM Exits Due to Vectored Events

VM Exits That Occur During Event Delivery

VM Exits Due to Instruction Execution








VMCS

e Example: MOV CR
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e Example: MOV CR
e Exit reason: “control register access”

e Exit qualification:
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e direction (Rx—CR or CR—RXx)
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VMCS

e Example: MOV CR
e Exit reason: “control register access”

e Exit qualification:
e which CR
e direction (Rx—CR or CR—RXx)
e register used

Daniel Gruss



CONTROL FIELDS
External-interrupt exiting | NMI exiting Virtual NMIs
Activate VMX-preemption timer Process posted interrupts
Interrupt-window exiting Use TSC offsetting
HLT exiting INVLPG exiting MWAIT exiting RDPMC exiting
RDTSC exiting CR3-load exiting CR3-store exiting CR8-load exiting
CR8-store exiting Use TPR shadow NMI-window exiting MOV-DR exiting
Unconditional 1/0 exiting Use 1/0 bitmaps Monitor trap flag Use MSR bitmaps
MONITOR exiting | PAUSE exiting | Activate secondary controls
Virtualize APIC accesses Enable EPT Descriptor-table exiting Enable RDTSCP
Virtualize x2APIC mode Enable VPID WBINVD exiting Unrestricted guest
APIC-register virtualization I Virtual-interrupt delivery | PAUSE-loop exiting
RDRAND exiting Enable INVPCID Enable VM functions VMCS shadowing
Enable ENCLS exiting RDSEED exiting Enable PML EPT-violation #VE
Conceal VMX non-root operation from Intel PT Enable XSAVES/XRSTORS
Mode-based execute control for EPT Use TSC scaling

APIC Virtualization

Posted-interrupt notification vector

Virtual-Processor Identifier

EPTP indevy







Virtualization: Trend 2000s — 2010s
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Virtualization: Trend 2000s — 2010s

The next step (= 2005):

e Virtualization Hardware Extensions for Intel and AMD
— substantially lower overheads for VMs
— better isolation

— laaS VMs become widely used

Daniel Gruss
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e Support for interrupt-virtualization
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Hardware Exentions: Intel VT

e Support for interrupt-virtualization

e VM-exit with every external interrupt (cannot be masked by guest)
e VM-exit when guest-OS ready to accept interrupts (EFLAGS.IF==1)

e Support for CRO and CR4-virtualization

e VVM-exit with any change of these registers
e can be set on which bits this shall happen

Daniel Gruss
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Solves our problems

e Address Space Compression

e change of address space with any switch guest/hypervisor
e guest owns full virtual address space

e Ring Problems, SYSENTER/SYSEXIT

e Guest can now run in ring 0O

Daniel Gruss
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Solves our problems

e Non-faulting Access to Privileged State

e access raise fault into hypervisor

e Hidden State
e Saved into VMCS

Daniel Gruss
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Hypervisor and Virtual Memory

e Hypervisor uses virtual memory

guest OS uses virtual memory

hardware supports page tables

how does this work?

e shadow page tables
e hardware support

Daniel Gruss



Virtual Memory

‘ Guest virtual address ‘

Address translatio T

Guest physical address

Address translation

Y
Host physical address
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All problems in computer science can be solved by another level of indirection.
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All problems in computer science can be solved by another level of indirection.
But that usually will create another problem.

David Wheeler
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virtual

adress-space physical

adress-space
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Known from theory and practice

1 2721 121 _
r PD PT Offset Guest virtual address
_ —
Y
—»@» PD @+ @®——» Guest physical address
PT
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and in 64 bit...

a7

3938 30|

L4

L3

29

21

20

L1

1211
Offset 0‘ Guest virtual address

- » PML4

PML4 ...

PDP
PD
PT

~& »|PDP

Page Map Level 4

.. Page Directory Pointer
... Page Directory
.. Page Table

ol

PD &>

PT r»&—»
Guest physical address

|

TLB
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Combined Paging

process guest host

virtual physical physical
dress-

adress-space address-space address-space
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Shadow Page Table

process guest host
virtual physical physical
adress-space

P adress-space adress-space
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Page Tables

process guest host
virtual physical physical
address-space
P address-space address-space
- Va
|/
N \ //7{-1-7‘
‘\\ [ //'
[ \, P
Guest| _ .~ Host
—__|page -~ —— | page
_| table ' | table "
e 4
| L
P / k\
. ™
\
N
LN
R
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ow Page Table

process
virtual
address-space

host
physical
address-space
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Shadow Page Table

e merges both page tables into one that the HW uses
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Shadow Page Table

e when HW changes shadow page table
e update guest PT

e expensive!

page faults caught by hypervisor

must run through guest PTs

must emulate accessed and modified bits for guest

Daniel Gruss



Guest CR3

EPT Base Pointer

‘ : EPT page table

Guest page table ‘ ! :

Guest linear

Guest phys. address
address

Ly Py b

L

Host phys.
address

TLB and Cache
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Nested PT (NPT, AMD) / Extended PT (EPT, Intel)

a7 EIEd 0]z 2120 1210 )
L Ls L2 L Ofiset

& LA
L’%&F"%’E’“EH} : ,_|“ - ”|“ - =°|H - ﬂ‘m N u|u R
o himln;
59| PUL4 - | PDP po-cEe-| PD (5| PT -

“guest page walk”
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Guest page walk

e lots of memory accesses....
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Guest page walk

e lots of memory accesses....

e but how many exactly?
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third for the host

7 3938 3029 21120 1211
L4 L3 L2 L1 Offset

, i
—|_><I/\_.. PML4 (»G)»PDP - »-@» PD &% PT | »® —-
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third for the host

7 39138 30129 21120 1211
L4 L3 L2 L1 Offset

N P .

-

)4
Le!:wwm ~® »PDP »®» PD (&> PT [ »
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third for the host

7 39138 30129 21120 1211
L4 L3 L2 L1 Offset

N P .

-

)4
Le!:wwm ~® »PDP »®» PD (&> PT [ »

@ @ L
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third for the host
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third for the host
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third for the host
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And Combined

’4? 3938 309 2120 12111 0
L4

L3 L2 L1 Offset

LCL—» PML4
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max. number of memory accesses per address translation

e 5 on guest level
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max. number of memory accesses per address translation

e 5 on guest level
e each induces 5 on host level

e makes 25!

Daniel Gruss



Guest Page Walk

gvA gCR3 | Nested page table ,
1 r 1
i -
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EE)
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gL, 15 [1 |z
1 @©
e et e ] |
|
i
gVA[20:12] gL,
o s B H-@-®{5 ]
T ____ N
|
i
VA[11:0]
PA L8 -
Entry
nCR3 nLy nL, nL, nL, Value
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Performance

e depending on application: 3.9-4.6 times slower
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Performance

e depending on application: 3.9-4.6 times slower

e but: TLB
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e EPT only used if VM active
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Intel Features

e EPT only used if VM active

e Translations tagged in TLB with EPT base pointer
e differentiate TLB-entries of different VMs
e TLB-flush per guest possible

e VPID: virtual processor ID

e unique value for each VM
e translations tagged in TLB using VPID

Daniel Gruss
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Fiaure 28-1 Formats of EPTP and EPT Paaina-Structure Entrias
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Enable VMX via CR4

Allocate a VMXON region and use the VMXON instruction

Allocate an MSR Bitmap region (we don't want a trap for all MSRs)
Use VMCLEAR instruction

Execute VMPTRLD to make a VMCS the “current VMCS”

Allocate a VMCS region and set up the VMCS (using VMWRITES)
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Setting up a hypervisor

No o bk~ o=

Enable VMX via CR4

Allocate a VMXON region and use the VMXON instruction

Allocate an MSR Bitmap region (we don't want a trap for all MSRs)
Use VMCLEAR instruction

Execute VMPTRLD to make a VMCS the “current VMCS”

Allocate a VMCS region and set up the VMCS (using VMWRITES)
Use the VMLAUNCH

Daniel Gruss
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What if we can’t do something in the Guest?

Similar problem as with Userspace-Kernelspace Isolation:

1. user needs help for some operations (e.g., HW interaction)

— can use a syscall!
2. What about VMs?
3. Same concept different level:

— Hypercalls! via the vmcall instruction

Daniel Gruss
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Virtualization: Trend 2010s — 20224

Optimization

e Full virtualization often not needed
e Serverless / Edge Computing (it's still a form of cloud computing)
e Virtualization is not for free — why not skip it and just use OS level isolation?

e Context switches between processes are expensive — why not skip process isolation and

just use language-level isolation?

Daniel Gruss



This course: hardware-assisted virtualization

Cloud Operating Systems — Hardware-assisted virtualization
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i Talk to your kids about hypervisors...before someone else does

WEEKTWO VEEK Six [VEEK Twene |
IT SAYS My VMICS DUE TO PHYSICAL YOU HAVEN'T ANSWERED.
's| [MEMORY ISSUES, T™M YOUR PHONE. IN DAYS,

HEY, ITs YOour CousIN IS BROKEN. \JHAT'S
T GOT A NEW COMFUTER A MCS? WHERE | | LEAVING ID MAPPING CANT SiEEP
BUT WANT TO HOOK. CAN T LOCK THAT UP| FOR EPT HOOKING, ( MUsT \JRITE
BOOTKIT.

INSTALL A

”HYPERVISOR™? LEMME e
SHoW You LOR TL
sire. ~ THE HOLY \GPLITTING.
SCRIPTURE OF VHOH.
OUR LORD AND SAVIOUR =

NTEL(R) THE FIANDAL

CAN YOu HELWP ME \,\} y,
HMM, UH
™ ( M “In \\1

PARENTS: TALK T YOUR
KIDS ABCUT HYPERVISORS. .

BEFORE. SOMEBODY EL<g DOES.
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CloudOS: the third time

e Seminar-style

You code

You plan

You present
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Team

Fabian Rauscher, Jonas Juffinger, Daniel Gruss
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Teams

15 participants — 4 teams with each 3-4 participants (default)
5 ECTS = 500h with 125h per team member
Team of 37 Same effort but +5 points

Team of 27 Same effort but +10 points

— send us your registration until Monday March 11

Daniel Gruss
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e Deadlines: Friday 23:59

e Grace Period: 48 hours but no support
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Timeline & Deadlines

22.3. Structure Setup
Estimated Team Effort: 125h, Points: 5P.

26.4. Executing Guest Code + Video Output

Estimated Team Effort: 125h, Points: 15P. — AG1

3.5. Interrupt + Emulate PIC + Public Feature Bidding

Estimated Team Effort: 100h, Points: 5P.

24.5. Boot Guest SWEB Shell + Virtualize Disk + Private Feature Bidding
Estimated Team Effort: 75h, Points: 35P. — AG2

31.5. Feature PoC in Booted Guest SWEB

Estimated Team Effort: 75h, Points: 10P.

14.6. Feature Implementation Done + Final Presentation and Demo in Booted Guest
SWEB
Estimated Team Effort: 75h, Points: 30P. — AG3

14.6. Successful Live Presentation at 21:00, Bonus Points: 5P.

Daniel Gruss










