Cloud Operating Systems

Daniel Gruss
2024-03-04

Moving to the cloud can save
up to 87% of IT energy

o | | E——
By moving we would use That's enough
86 up to o power
87% Los
onge
million less energy. AngEIes
U.S. office for 1 year.
workers
to the cloud
—

Cloud means Efficiency

How does the cloud bring effici

Apply OS techniques - Example?

e Processes used to have access to all physical memory — that's not efficient!

Daniel Gruss

How does the cloud bring effi

Apply OS techniques - Example?

e Processes used to have access to all physical memory — that's not efficient!

— Virtualize memory — processes can share resources of one machine and utilize it better

Daniel Gruss

How does the cloud bring effi

Apply OS techniques - Example?

e Processes used to have access to all physical memory — that's not efficient!
— Virtualize memory — processes can share resources of one machine and utilize it better

e Processes need all the same pages — that's not efficient!

Daniel Gruss

How does the cloud bring effi

Apply OS techniques - Example?

e Processes used to have access to all physical memory — that's not efficient!
— Virtualize memory — processes can share resources of one machine and utilize it better
e Processes need all the same pages — that's not efficient!

— Let them share memory, using COW, page deduplication, etc.

Daniel Gruss

How does the cloud bring effi

Apply OS techniques - Example?

e Processes used to have access to all physical memory — that's not efficient!

— Virtualize memory — processes can share resources of one machine and utilize it better
e Processes need all the same pages — that's not efficient!

— Let them share memory, using COW, page deduplication, etc.

e Processes often cannot do anything but wait — that's not efficient!

Daniel Gruss

How does the cloud bring effi

Apply OS techniques - Example?

e Processes used to have access to all physical memory — that's not efficient!

— Virtualize memory — processes can share resources of one machine and utilize it better
e Processes need all the same pages — that's not efficient!

— Let them share memory, using COW, page deduplication, etc.
e Processes often cannot do anything but wait — that's not efficient!

— Let other processes run in between

Daniel Gruss

IaaS: VMs, Servers, Storage, Load Balancing, Network, ...
PaaS: Runtime, Database, Web server, Dev Tools, ...
SaaS: CRM, Email, virtual desktop, communication, games, ...

Different techniques - similar challenges

e Efficiency

Daniel Gruss

nt techniques - similar challenges

e Efficiency

e Isolation of tenants (security, reliability, availability)

Daniel Gruss

nt techniques - similar challenges

e Efficiency
e Isolation of tenants (security, reliability, availability)

e Abstraction of hardware

Daniel Gruss

Virtualization allows to represent resources in a computer in a way they can be used easily

and without the need to know details of their properties

Daniel Gruss

Virtual Machines (VM)

e Decouple operating system from hardware

Daniel Gruss

ual Machines (VM)

e Decouple operating system from hardware

e ‘“computer in computer” - implemented in software

Daniel Gruss

ual Machines (VM)

e Decouple operating system from hardware

e ‘“computer in computer” - implemented in software
e includes devices (network, keyboard, sound...)

Daniel Gruss

ual Machines (VM)

e Decouple operating system from hardware

e ‘“computer in computer” - implemented in software
e includes devices (network, keyboard, sound...)

e OS in VM “sees” its hardware, irrespective from the actual hardware in use

Daniel Gruss

Virtual Machines (VM)

e Decouple operating system from hardware

e ‘“computer in computer” - implemented in software
e includes devices (network, keyboard, sound...)

e OS in VM “sees” its hardware, irrespective from the actual hardware in use

e OS does not know if HW is concurrently used by other VMS

Daniel Gruss

Why virtualization

Daniel Gruss

Why virtualization

Daniel Gruss

Why virtualization

Daniel Gruss

y virtualization

e Cheaper hardware: one server for one task was common

Daniel Gruss

y virtualization

e Cheaper hardware: one server for one task was common

e most of these servers: idle time 90%

Daniel Gruss

y virtualization

e Cheaper hardware: one server for one task was common
e most of these servers: idle time 90%

e cost issue:

Daniel Gruss

y virtualization

e Cheaper hardware: one server for one task was common
e most of these servers: idle time 90%

e cost issue:

e support, maintenance

Daniel Gruss

y virtualization

e Cheaper hardware: one server for one task was common
e most of these servers: idle time 90%

e cost issue:

e support, maintenance
e power consumption (operation, cooling)

Daniel Gruss

y virtualization

e Cheaper hardware: one server for one task was common
e most of these servers: idle time 90%

e cost issue:

e support, maintenance
e power consumption (operation, cooling)

e space

Daniel Gruss

y virtualization

Cheaper hardware: one server for one task was common

most of these servers: idle time 90%

e cost issue:

e support, maintenance
e power consumption (operation, cooling)

e space

Virtualization allows consolidation

Daniel Gruss

Why virtualization

Cheaper hardware: one server for one task was common

most of these servers: idle time 90%

e cost issue:

e support, maintenance
e power consumption (operation, cooling)

e space

Virtualization allows consolidation

e multiple servers on one box

Daniel Gruss

n Daniel Gruss

n Daniel Gruss

n Daniel Gruss

$ e Better hardware utilization

&

n Daniel Gruss

$ e Better hardware utilization

e Lower administration cost

&

n Daniel Gruss

$ e Better hardware utilization

e Lower administration cost

&

e |ong-term operations of older applications

n Daniel Gruss

Better hardware utilization

S

e Lower administration cost

&

long-term operations of older applications

lower down-times

n Daniel Gruss

Better hardware utilization

S

e Lower administration cost

&

long-term operations of older applications

lower down-times

simple migration to more powerful hardware

n Daniel Gruss

dvantages

Daniel Gruss

Disadvantages

P

Daniel Gruss

Disadvantages

P

Daniel Gruss

Disadvantages

e Performance cost: slower |/O operation

Daniel Gruss

Disadvantages

e Performance cost: slower |/O operation

e single point of failure: requires better hardware reliability

Daniel Gruss

Disadvantages

e Performance cost: slower |/O operation
e single point of failure: requires better hardware reliability

e security gets more complex

Daniel Gruss

Virtualization: Trend 1990s — 2000s

e Virtualization no significant role in internet hosting

n Daniel Gruss

Virtualization: Trend 1990s — 2000s

e Virtualization no significant role in internet hosting

e often PaaS

n Daniel Gruss

Virtualization: Trend 1990s — 2000s

e Virtualization no significant role in internet hosting
e often PaaS
e Web hosts (FTP access, HTTP website)

n Daniel Gruss

Virtualization: Trend 1990s — 2000s

e Virtualization no significant role in internet hosting
often PaaS
Web hosts (FTP access, HTTP website)

Isolation on the OS level (tenants as users)

n Daniel Gruss

Virtualization: Trend 1990s — 2000s

e Virtualization no significant role in internet hosting
often PaaS
Web hosts (FTP access, HTTP website)

Isolation on the OS level (tenants as users)

e no hardware support — expensive + many problems

n Daniel Gruss

e OS-level Virtualization

n Daniel Gruss

e OS-level Virtualization

e Para-Virtualization

n Daniel Gruss

e OS-level Virtualization

e Para-Virtualization

e Full Virtualization

n Daniel Gruss

OS-level Virtualization

Para-Virtualization
Full Virtualization

Hardware-Assisted Virtualization

Daniel Gruss

OS-level Virtualization

e integrated into kernel

Daniel Gruss

OS-level Virtualization

e integrated into kernel

e all application software intended to run in a virtual environment get strictly separated
virtual runtime environments (container, jail)

Daniel Gruss

OS-level Virtualization

e integrated into kernel
e all application software intended to run in a virtual environment get strictly separated

virtual runtime environments (container, jail)

e no separate kernels - only process level virtualization

Daniel Gruss

OS-level Virtualization

e integrated into kernel

e all application software intended to run in a virtual environment get strictly separated
virtual runtime environments (container, jail)

e no separate kernels - only process level virtualization

e can't run other OSes - only for applications

Daniel Gruss

OS-level Virtualization

e integrated into kernel

e all application software intended to run in a virtual environment get strictly separated
virtual runtime environments (container, jail)

e no separate kernels - only process level virtualization
e can't run other OSes - only for applications

e examples: OpenVZ, Docker, (s)chroot

Daniel Gruss

Para-Virtualization

Daniel Gruss

Para-Virtualization

Daniel Gruss

Para-Virtualization

Daniel Gruss

Para-Virtualization

e Cooperation with OS: OS is aware of virtualization

Daniel Gruss

Para-Virtualization

e Cooperation with OS: OS is aware of virtualization

e needs to modify guest

Daniel Gruss

Para-Virtualization

e Cooperation with OS: OS is aware of virtualization
e needs to modify guest

e not usable for closed source OSes

Daniel Gruss

Full Virtualization

e OS not aware of being virtualized

Daniel Gruss

Full Virtualization

e OS not aware of being virtualized

e no need to adapt guest

Daniel Gruss

Full Virtualization

e OS not aware of being virtualized
e no need to adapt guest

e reduced performance

Daniel Gruss

Full Virtualization

e OS not aware of being virtualized
e no need to adapt guest

e reduced performance
e up to 25%

Daniel Gruss

Full Virtualization

OS not aware of being virtualized

no need to adapt guest

reduced performance
e up to 25%

full virtualization of HW required (e.g., emulation via gemu)

Daniel Gruss

Full Virtualization

OS not aware of being virtualized

no need to adapt guest

reduced performance
e up to 25%

full virtualization of HW required (e.g., emulation via gemu)

e virtual machines not allowed to access physical components

Daniel Gruss

Full Virtualization

OS not aware of being virtualized

no need to adapt guest

reduced performance
e up to 25%

full virtualization of HW required (e.g., emulation via gemu)

e virtual machines not allowed to access physical components
e every physical component has to be virtualized and requires drivers in OS

Daniel Gruss

Some earlier systems: binary translation

e Guest no longer runs in kernel mode (Ring 0)

Daniel Gruss

Some earlier systems: binary translation

e Guest no longer runs in kernel mode (Ring 0)

e parts that require kernel privileges won't run

Daniel Gruss

Some earlier systems: binary translation

e Guest no longer runs in kernel mode (Ring 0)

e parts that require kernel privileges won't run

e hypervisor (VMM) changes binaries of guest-OS on the fly

Daniel Gruss

Some earlier systems: binary translation

e Guest no longer runs in kernel mode (Ring 0)

e parts that require kernel privileges won't run
e hypervisor (VMM) changes binaries of guest-OS on the fly

e allows supporting any OS

Daniel Gruss

Some earlier systems: binary translation

e Guest no longer runs in kernel mode (Ring 0)

e parts that require kernel privileges won't run
e hypervisor (VMM) changes binaries of guest-OS on the fly

e allows supporting any OS

e no need to change source

Daniel Gruss

Some earlier systems: binary translation

Guest no longer runs in kernel mode (Ring 0)

e parts that require kernel privileges won't run

hypervisor (VMM) changes binaries of guest-OS on the fly

allows supporting any OS

e no need to change source

high performance penalty

Daniel Gruss

e First full x86 virtualization

Daniel Gruss

e First full x86 virtualization

e hypervisor continuously reads program code before it is executed (pre-scan)

Daniel Gruss

o First full x86 virtualization
e hypervisor continuously reads program code before it is executed (pre-scan)

e looking for relevant commands

Daniel Gruss

o First full x86 virtualization
e hypervisor continuously reads program code before it is executed (pre-scan)

e looking for relevant commands

e change of system state

Daniel Gruss

o First full x86 virtualization
e hypervisor continuously reads program code before it is executed (pre-scan)

e looking for relevant commands

e change of system state
e commands depending on CPU state

Daniel Gruss

First full x86 virtualization

e hypervisor continuously reads program code before it is executed (pre-scan)

looking for relevant commands

e change of system state
e commands depending on CPU state

sets breakpoint and lets OS run

Daniel Gruss

Problems virtualizing on 1A-32

Daniel Gruss

Problems virtualizing on 1A-32

Problems virtualizing on 1A-32

Problems virtualizing on 1A-32

@ @ @ e Diverse problems were to be solved when virtualizing on [A-32:

Daniel Gruss

Problems virtualizing on 1A-32

@ @ @ e Diverse problems were to be solved when virtualizing on [A-32:
e Ring Problems

Daniel Gruss

Problems virtualizing on 1A-32

@ @ @ e Diverse problems were to be solved when virtualizing on [A-32:

e Ring Problems

@. -@ e Address Space Compression

Daniel Gruss

Problems virtualizing on 1A-32

@ @ @ e Diverse problems were to be solved when virtualizing on [A-32:

e Ring Problems

@. -@ e Address Space Compression

e Non-Faulting Access to Priv. State

Daniel Gruss

Problems virtualizing on 1A-32

@ @ @ e Diverse problems were to be solved when virtualizing on [A-32:

e Ring Problems

@. -@ e Address Space Compression

e Non-Faulting Access to Priv. State
e SYSENTER / SYSEXIT

Daniel Gruss

Problems virtualizing on 1A-32

@ @ @ e Diverse problems were to be solved when virtualizing on [A-32:

e Ring Problems

@. -@ e Address Space Compression

e Non-Faulting Access to Priv. State
SYSENTER / SYSEXIT
Interrupt Virtualization

Daniel Gruss

Problems virtualizing on 1A-32

@ @ @ e Diverse problems were to be solved when virtualizing on [A-32:

e Ring Problems

@. -@ e Address Space Compression

e Non-Faulting Access to Priv. State
e SYSENTER / SYSEXIT

e Interrupt Virtualization

e Hidden States

Daniel Gruss

Ring Problem 1: which ring

e usually: application run in ring 3, kernel in ring 0

Daniel Gruss

Ring Problem 1: which ring

e usually: application run in ring 3, kernel in ring 0

e guest may not run in ring 0

Daniel Gruss

Ring Problem 1: which ring

e usually: application run in ring 3, kernel in ring 0
e guest may not run in ring 0

e ring de-privileging needed: guest must run in ring > 0

Daniel Gruss

Ring Problem 1: which ring

e usually: application run in ring 3, kernel in ring 0
e guest may not run in ring 0
e ring de-privileging needed: guest must run in ring > 0

e most often 1 or 3

Daniel Gruss

Ring Problem 2: aliasing

e guest has to run in a ring it has not been developed for

Daniel Gruss

Ring Problem 2: aliasing

e guest has to run in a ring it has not been developed for

e certain instructions contain privilege level in result (e.g. PUSH CS)

Daniel Gruss

Ring Problem 2: aliasing

e guest has to run in a ring it has not been developed for
e certain instructions contain privilege level in result (e.g. PUSH CS)

e guest OS can find out ring it is running in

Daniel Gruss

Ring Problem 2: aliasing

guest has to run in a ring it has not been developed for

e certain instructions contain privilege level in result (e.g. PUSH CS)

guest OS can find out ring it is running in

may result in diverse problems

Daniel Gruss

Address Space Compression

e Guest expects to have full address space available

Daniel Gruss

Address Space Compression

e Guest expects to have full address space available

e hypervisor requires part of address space

Daniel Gruss

Address Space Compression

e Guest expects to have full address space available

e hypervisor requires part of address space

e control structures for switching between guest and hypervisor

Daniel Gruss

Address Space Compression

e Guest expects to have full address space available

e hypervisor requires part of address space

e control structures for switching between guest and hypervisor

e Access to these areas not allowed for guest. Invokes switch to hypervisor who has to
emulate these accesses

Daniel Gruss

Non-Faulting Access to Priv. State

e unprivileged software may not access certain elements of the CPU state

Daniel Gruss

Non-Faultin ccess to Priv. State

e unprivileged software may not access certain elements of the CPU state

e access by guest results in fault: hypervisor can emulate instructions

Daniel Gruss

Non-Faultin ccess to Priv. State

e unprivileged software may not access certain elements of the CPU state
e access by guest results in fault: hypervisor can emulate instructions

e |A-32 possesses instructions that do not induce a fault:

Daniel Gruss

Non-Faulting Access to Priv. State

e unprivileged software may not access certain elements of the CPU state
e access by guest results in fault: hypervisor can emulate instructions

e |A-32 possesses instructions that do not induce a fault:
e Registers GDTR, IDTR, LDTR and TR are only modifiable in ring 0

Daniel Gruss

Non-Faulting Access to Priv. State

e unprivileged software may not access certain elements of the CPU state
e access by guest results in fault: hypervisor can emulate instructions

e |A-32 possesses instructions that do not induce a fault:

e Registers GDTR, IDTR, LDTR and TR are only modifiable in ring 0
e can be executed in any ring without fault (without function)

Daniel Gruss

SYSENTER / SYSEXIT

e special commands for fast syscalls

Daniel Gruss

SYSENTER / SYSEXIT

e special commands for fast syscalls

e SYSENTER always switches to ring 0

Daniel Gruss

SYSENTER / SYSEXIT

e special commands for fast syscalls
e SYSENTER always switches to ring 0
e SYSEXIT can only be executed in ring 0

Daniel Gruss

SYSENTER / SYSEXIT

e special commands for fast syscalls

SYSENTER always switches to ring 0

SYSEXIT can only be executed in ring 0

ring 1 thus is problematic

Daniel Gruss

SYSENTER / SYSEXIT

e special commands for fast syscalls

SYSENTER always switches to ring 0

SYSEXIT can only be executed in ring 0

ring 1 thus is problematic

e SYSENTER switches to hypervisor — has to emulate

Daniel Gruss

SYSENTER / SYSEXIT

e special commands for fast syscalls

e SYSENTER always switches to ring 0
e SYSEXIT can only be executed in ring 0
e ring 1 thus is problematic

e SYSENTER switches to hypervisor — has to emulate
e SYSEXIT switches to hypervisor — has to emulate

Daniel Gruss

Interrupt Virtualization

e interrupts can be masked (so they do not occur if not welcome)

Daniel Gruss

Interrupt Virtualization

e interrupts can be masked (so they do not occur if not welcome)
e controlled by IF-flag in EFLAGS-Register

Daniel Gruss

Interrupt Virtualization

e interrupts can be masked (so they do not occur if not welcome)
e controlled by IF-flag in EFLAGS-Register
e Interrupts managed by VM though

Daniel Gruss

Interrupt Virtualization

interrupts can be masked (so they do not occur if not welcome)
controlled by IF-flag in EFLAGS-Register
Interrupts managed by VM though

change of IF — fault to hypervisor

Daniel Gruss

Interrupt Virtualization

interrupts can be masked (so they do not occur if not welcome)
controlled by IF-flag in EFLAGS-Register
Interrupts managed by VM though

change of IF — fault to hypervisor

OS do this quite often — performance problem

Daniel Gruss

Interrupt Virtualization

e interrupts can be masked (so they do not occur if not welcome)
e controlled by IF-flag in EFLAGS-Register

e Interrupts managed by VM though

e change of IF — fault to hypervisor

e OS do this quite often — performance problem

e forwarding of virtual interrupts must consider IF

Daniel Gruss

hidden state information

Daniel Gruss

hidden state information

Daniel Gruss

hidden state information

Daniel Gruss

hidden state information

e Not all state-information accessible via registers

Daniel Gruss

hidden state information

e Not all state-information accessible via registers

e cannot be saved and restored when switching between VMs

Daniel Gruss

Intel Virtualization Architecture

e Two new operating modes:

Daniel Gruss

Intel Virtualization Architecture

e Two new operating modes:

e VMX root operation

Daniel Gruss

ualization hitecture

e Two new operating modes:

e VMX root operation

e for hypervisor

Daniel Gruss

ualization hitecture

e Two new operating modes:

e VMX root operation

e for hypervisor

e VMX non-root operation

Daniel Gruss

ualization hitecture

e Two new operating modes:
e VMX root operation
e for hypervisor
e VMX non-root operation

e controlled by hypervisor

Daniel Gruss

ualization hitecture

e Two new operating modes:
e VMX root operation
e for hypervisor
e VMX non-root operation

e controlled by hypervisor
e supports VMs

Daniel Gruss

ualization hitecture

e Two new operating modes:

e VMX root operation
e for hypervisor
e VMX non-root operation
e controlled by hypervisor

e supports VMs

e Both modes have ring 0-3

Daniel Gruss

ualization hitecture

e Two new operating modes:

e VMX root operation

e for hypervisor
e VMX non-root operation

e controlled by hypervisor
e supports VMs

e Both modes have ring 0-3

e guest can run in ring 0

Daniel Gruss

ualization hitecture

e Two new operating modes:
e VMX root operation
e for hypervisor
e VMX non-root operation

e controlled by hypervisor
e supports VMs

Both modes have ring 0-3
e guest can run in ring 0

e hypervisor said to be running in “ring -1"

Daniel Gruss

Rings on Intel

Ring 3
Ring 1&2

Device drivers
Applications

Daniel Gruss

VMM Operation

Guest 0 Guest 1

VM Exit VM Entry % Exit

VMXON 4i| VM Monitor p——— VMXOFF

Daniel Gruss

VMM Transitions

Inactive
Not Current
Clear

Active
Not Current

< < 47 VMCLEAR X

= = R Y,

3 3 LR (3

x = \IN% Q

E 5 A¢ K

v, =< N Anything S
Else

Current VMLAUNCH

Clear

Active
Not Current
Launched

Current
Launched

Daniel Gruss

e VM entry: root operation — non-root operation

Daniel Gruss

e VM entry: root operation — non-root operation

e VM exit: non-root operation — root operation

Daniel Gruss

e VM entry: root operation — non-root operation
e VM exit: non-root operation — root operation

e VMCS: Virtual Machine Control Structure

Daniel Gruss

e VM entry: root operation — non-root operation
e VM exit: non-root operation — root operation

e VMCS: Virtual Machine Control Structure

o Guest-state-area

Daniel Gruss

e VM entry: root operation — non-root operation
e VM exit: non-root operation — root operation

e VMCS: Virtual Machine Control Structure

o Guest-state-area
e Host-state-area

Daniel Gruss

VM entry: root operation — non-root operation

VM exit: non-root operation — root operation
VMCS: Virtual Machine Control Structure

o Guest-state-area

e Host-state-area

Entry/Exit loads/safes information using the proper area

Daniel Gruss

VMCS - Guest State Area

e Contains elements comprising the state of the virtual CPU of a VMCS

Daniel Gruss

VMCS - Guest State Area

e Contains elements comprising the state of the virtual CPU of a VMCS
e VM-exit requires loading certain registers (like segment registers, CR3, IRTR...)

Daniel Gruss

VMCS - Guest State Area

e Contains elements comprising the state of the virtual CPU of a VMCS
e VM-exit requires loading certain registers (like segment registers, CR3, IRTR...)

e GSA contains fields for these registers

Daniel Gruss

VMCS - Guest State Area

Contains elements comprising the state of the virtual CPU of a VMCS
e VM-exit requires loading certain registers (like segment registers, CR3, IRTR...)

GSA contains fields for these registers

GSA contains fields for other information not readable via registers

Daniel Gruss

VMCS - Guest State Area

Contains elements comprising the state of the virtual CPU of a VMCS
e VM-exit requires loading certain registers (like segment registers, CR3, IRTR...)

GSA contains fields for these registers

GSA contains fields for other information not readable via registers

e e.g. interruptability state

Daniel Gruss

e 16-bits fields.

CopyLeft 2017, @Noteworthy (Intel Manuel of July 2017)

GUEST TE AREA

Selector
GDTR
IDTR

Page-directory-pointer-table entries
Guest interrupt status

HOST STATE AREA

CS Selector
SS Selector
DS Selector
ES Selector
FS Selector

Selector

Selector

VMCS

e Addressed using physical addresses

Daniel Gruss

VMCS

e Addressed using physical addresses

e not part of guest address space

Daniel Gruss

VMCS

e Addressed using physical addresses
e not part of guest address space

e hypervisor may run in different address space as guest (CR3 part of state)

Daniel Gruss

VMCS

e Addressed using physical addresses

not part of guest address space

hypervisor may run in different address space as guest (CR3 part of state)

VM-exits leave detailed information on reason for exit in VMCS

Daniel Gruss

VMCS

e Addressed using physical addresses

not part of guest address space

hypervisor may run in different address space as guest (CR3 part of state)

VM-exits leave detailed information on reason for exit in VMCS

e exit reason

Daniel Gruss

VMCS

e Addressed using physical addresses

not part of guest address space

hypervisor may run in different address space as guest (CR3 part of state)

VM-exits leave detailed information on reason for exit in VMCS

e exit reason
e exit qualification

Daniel Gruss

VM-EXIT CONTROL FIELDS

Save debug controls \ Host address space size ‘ Load IA32_PERF_GLOBAL_CTRL
Acknowledge interrupt on exit ‘ Save IA32_PAT ‘ Load IA32_PAT | Save IA32_EFER ‘ Load IA32_EFER
Save VMX preemption timer value Clear IA32_BNDCFGS Conceal VM exits from Intel PT

VM-Exit Controls
for MSRs

VM-EXIT INFORMATION FIELDS

Basic VM-Exit
Information
VM Exits Due to Vectored Events

VM Exits That Occur During Event Delivery

VM Exits Due to Instruction Execution

VMCS

e Example: MOV CR

Daniel Gruss

VMCS

e Example: MOV CR

e Exit reason: “control register access”

Daniel Gruss

VMCS

e Example: MOV CR
e Exit reason: “control register access”

e Exit qualification:

Daniel Gruss

VMCS

e Example: MOV CR
e Exit reason: “control register access”

e Exit qualification:
e which CR

Daniel Gruss

VMCS

e Example: MOV CR
e Exit reason: “control register access”

e Exit qualification:
e which CR
e direction (Rx—CR or CR—RXx)

Daniel Gruss

VMCS

e Example: MOV CR
e Exit reason: “control register access”

e Exit qualification:
e which CR
e direction (Rx—CR or CR—RXx)
e register used

Daniel Gruss

CONTROL FIELDS
External-interrupt exiting | NMI exiting Virtual NMIs
Activate VMX-preemption timer Process posted interrupts
Interrupt-window exiting Use TSC offsetting
HLT exiting INVLPG exiting MWAIT exiting RDPMC exiting
RDTSC exiting CR3-load exiting CR3-store exiting CR8-load exiting
CR8-store exiting Use TPR shadow NMI-window exiting MOV-DR exiting
Unconditional 1/0 exiting Use 1/0 bitmaps Monitor trap flag Use MSR bitmaps
MONITOR exiting | PAUSE exiting | Activate secondary controls
Virtualize APIC accesses Enable EPT Descriptor-table exiting Enable RDTSCP
Virtualize x2APIC mode Enable VPID WBINVD exiting Unrestricted guest
APIC-register virtualization I Virtual-interrupt delivery | PAUSE-loop exiting
RDRAND exiting Enable INVPCID Enable VM functions VMCS shadowing
Enable ENCLS exiting RDSEED exiting Enable PML EPT-violation #VE
Conceal VMX non-root operation from Intel PT Enable XSAVES/XRSTORS
Mode-based execute control for EPT Use TSC scaling

APIC Virtualization

Posted-interrupt notification vector

Virtual-Processor Identifier

EPTP indevy

Virtualization: Trend 2000s — 2010s

The next step (= 2005):

e Virtualization Hardware Extensions for Intel and AMD

Daniel Gruss

Virtualization: Trend 2000s — 2010s

The next step (= 2005):

e Virtualization Hardware Extensions for Intel and AMD

— substantially lower overheads for VMs

Daniel Gruss

Virtualization: Trend 2000s — 2010s

The next step (= 2005):

e Virtualization Hardware Extensions for Intel and AMD
— substantially lower overheads for VMs

— better isolation

Daniel Gruss

Virtualization: Trend 2000s — 2010s

The next step (= 2005):

e Virtualization Hardware Extensions for Intel and AMD
— substantially lower overheads for VMs
— better isolation

— laaS VMs become widely used

Daniel Gruss

Hardware Exentions: Intel VT

e Support for interrupt-virtualization

Daniel Gruss

dware Exentions: Intel VT

e Support for interrupt-virtualization

e VM-exit with every external interrupt (cannot be masked by guest)

Daniel Gruss

Hardware Exentions: Intel VT

e Support for interrupt-virtualization

e VM-exit with every external interrupt (cannot be masked by guest)
e VM-exit when guest-OS ready to accept interrupts (EFLAGS.IF==1)

Daniel Gruss

Hardware Exentions: Intel VT

e Support for interrupt-virtualization

e VM-exit with every external interrupt (cannot be masked by guest)
e VM-exit when guest-OS ready to accept interrupts (EFLAGS.IF==1)

e Support for CRO and CR4-virtualization

Daniel Gruss

Hardware Exentions: Intel VT

e Support for interrupt-virtualization

e VM-exit with every external interrupt (cannot be masked by guest)
e VM-exit when guest-OS ready to accept interrupts (EFLAGS.IF==1)

e Support for CRO and CR4-virtualization

e VVM-exit with any change of these registers

Daniel Gruss

Hardware Exentions: Intel VT

e Support for interrupt-virtualization

e VM-exit with every external interrupt (cannot be masked by guest)
e VM-exit when guest-OS ready to accept interrupts (EFLAGS.IF==1)

e Support for CRO and CR4-virtualization

e VVM-exit with any change of these registers
e can be set on which bits this shall happen

Daniel Gruss

Solves our problems

e Address Space Compression

Daniel Gruss

Solves our problems

e Address Space Compression

e change of address space with any switch guest/hypervisor

Daniel Gruss

Solves our problems

e Address Space Compression

e change of address space with any switch guest/hypervisor
e guest owns full virtual address space

Daniel Gruss

Solves our problems

e Address Space Compression

e change of address space with any switch guest/hypervisor
e guest owns full virtual address space

e Ring Problems, SYSENTER/SYSEXIT

Daniel Gruss

Solves our problems

e Address Space Compression

e change of address space with any switch guest/hypervisor
e guest owns full virtual address space

e Ring Problems, SYSENTER/SYSEXIT

e Guest can now run in ring 0O

Daniel Gruss

Solves our problems

e Non-faulting Access to Privileged State

Daniel Gruss

Solves our problems

e Non-faulting Access to Privileged State

e access raise fault into hypervisor

Daniel Gruss

Solves our problems

e Non-faulting Access to Privileged State

e access raise fault into hypervisor

e Hidden State

Daniel Gruss

Solves our problems

e Non-faulting Access to Privileged State

e access raise fault into hypervisor

e Hidden State
e Saved into VMCS

Daniel Gruss

Hypervisor and Virtual Me

e Hypervisor uses virtual memory

Daniel Gruss

Hypervisor and Virtual Me

e Hypervisor uses virtual memory

e guest OS uses virtual memory

Daniel Gruss

Hypervisor and Virtual Me

e Hypervisor uses virtual memory
e guest OS uses virtual memory

e hardware supports page tables

Daniel Gruss

Hypervisor and Virtual Memory

e Hypervisor uses virtual memory

guest OS uses virtual memory

hardware supports page tables

how does this work?

Daniel Gruss

Hypervisor and Virtual Memory

e Hypervisor uses virtual memory

guest OS uses virtual memory

hardware supports page tables

how does this work?

e shadow page tables

Daniel Gruss

Hypervisor and Virtual Memory

e Hypervisor uses virtual memory

guest OS uses virtual memory

hardware supports page tables

how does this work?

e shadow page tables
e hardware support

Daniel Gruss

Virtual Memory

‘ Guest virtual address ‘

Address translatio T

Guest physical address

Address translation

Y
Host physical address

Daniel Gruss

All problems in computer science can be solved by another level of indirection.

Daniel Gruss

All problems in computer science can be solved by another level of indirection.
But that usually will create another problem.

David Wheeler

Daniel Gruss

virtual

adress-space physical

adress-space

38 Daniel Gruss

Known from theory and practice

1 2721 121 _
r PD PT Offset Guest virtual address
_ —
Y
—»@» PD @+ @®——» Guest physical address
PT

Daniel Gruss

and in 64 bit...

a7

3938 30|

L4

L3

29

21

20

L1

1211
Offset 0‘ Guest virtual address

- » PML4

PML4 ...

PDP
PD
PT

~& »|PDP

Page Map Level 4

.. Page Directory Pointer
... Page Directory
.. Page Table

ol

PD &>

PT r»&—»
Guest physical address

|

TLB

Daniel Gruss

Combined Paging

process guest host

virtual physical physical
dress-

adress-space address-space address-space

Daniel Gruss

Shadow Page Table

process guest host
virtual physical physical
adress-space

P adress-space adress-space

Daniel Gruss

Page Tables

process guest host
virtual physical physical
address-space
P address-space address-space
- Va
|/
N \ //7{-1-7‘
‘\\ [//'
[\, P
Guest| _ .~ Host
—__|page -~ —— | page
_| table ' | table "
e 4
| L
P / k\
. ™
\
N
LN
R

Daniel Gruss

ow Page Table

process
virtual
address-space

host
physical
address-space

Daniel Gruss

Shadow Page Table

e merges both page tables into one that the HW uses

Daniel Gruss

Shadow Page Table

e merges both page tables into one that the HW uses

e when guest changes own page table

Daniel Gruss

Shadow Page Table

e merges both page tables into one that the HW uses

e when guest changes own page table

e Hypervisor has to catch access

Daniel Gruss

Shadow Page Table

e merges both page tables into one that the HW uses

e when guest changes own page table

e Hypervisor has to catch access
e update shadow page table

Daniel Gruss

Shadow Page Table

e when HW changes shadow page table

Daniel Gruss

Shadow Page Table

e when HW changes shadow page table
e update guest PT

Daniel Gruss

Shadow Page Table

e when HW changes shadow page table
e update guest PT

e expensive!

Daniel Gruss

Shadow Page Table

e when HW changes shadow page table
e update guest PT

e expensive!
e page faults caught by hypervisor

Daniel Gruss

Shadow Page Table

e when HW changes shadow page table
e update guest PT

e expensive!
e page faults caught by hypervisor
e must run through guest PTs

Daniel Gruss

Shadow Page Table

e when HW changes shadow page table
e update guest PT

e expensive!

page faults caught by hypervisor

must run through guest PTs

must emulate accessed and modified bits for guest

Daniel Gruss

Guest CR3

EPT Base Pointer

‘ : EPT page table

Guest page table ‘ ! :

Guest linear

Guest phys. address
address

Ly Py b

L

Host phys.
address

TLB and Cache

Daniel Gruss

Nested PT (NPT, AMD) / Extended PT (EPT, Intel)

a7 EIEd 0]z 2120 1210)
L Ls L2 L Ofiset

& LA
L’%&F"%’E’“EH} : ,_|“ - ”|“ - =°|H - ﬂ‘m N u|u R
o himln;
59| PUL4 - | PDP po-cEe-| PD (5| PT -

“guest page walk”

Daniel Gruss

Guest page walk

e lots of memory accesses....

Daniel Gruss

Guest page walk

e lots of memory accesses....

e but how many exactly?

Daniel Gruss

third for the host

7 3938 3029 21120 1211
L4 L3 L2 L1 Offset

, i
—|_><I/_.. PML4 (»G)»PDP - »-@» PD &% PT | »® —-

Daniel Gruss

third for the host

7 39138 30129 21120 1211
L4 L3 L2 L1 Offset

N P .

-

)4
Le!:wwm ~® »PDP »®» PD (&> PT [»

50 Daniel Gruss

third for the host

7 39138 30129 21120 1211
L4 L3 L2 L1 Offset

N P .

-

)4
Le!:wwm ~® »PDP »®» PD (&> PT [»

@ @ L

50 Daniel Gruss

third for the host

L3 L2

Y
—|—>(I\—r PMLA4 & »PDP -3 »

OO

Daniel Gruss

third for the host

L3 L2

Y
—|—>(I\—r PMLA4 & »PDP -3 »

OO

Daniel Gruss

third for the host

Daniel Gruss

And Combined

’4? 3938 309 2120 12111 0
L4

L3 L2 L1 Offset

LCL—» PML4

Daniel Gruss

max. number of memory accesses per address translation

e 5 on guest level

Daniel Gruss

max. number of memory accesses per address translation

e 5 on guest level

e each induces 5 on host level

Daniel Gruss

max. number of memory accesses per address translation

e 5 on guest level
e each induces 5 on host level

e makes 25!

Daniel Gruss

Guest Page Walk

gvA gCR3 | Nested page table ,
1 r 1
i -
gl, |oVAl47:39] ég_PASPASPASPASPA g|5_4 lePA
i
o m m e e e |
' o)
gVA[38:30] L &
o s DD w]
EE)
N N a
gVA[29:21] é___ glb, | %
gL, 15 [1 |z
1 @©
e et e] |
|
i
gVA[20:12] gL,
o s B H-@-®{5]
T ____ N
|
i
VA[11:0]
PA L8 -
Entry
nCR3 nLy nL, nL, nL, Value

Daniel Gruss

Performance

e depending on application: 3.9-4.6 times slower

Daniel Gruss

Performance

e depending on application: 3.9-4.6 times slower

e but: TLB

Daniel Gruss

Intel Features

e EPT only used if VM active

Daniel Gruss

Intel Features

e EPT only used if VM active
e Translations tagged in TLB with EPT base pointer

Daniel Gruss

Intel Features

e EPT only used if VM active

e Translations tagged in TLB with EPT base pointer
e differentiate TLB-entries of different VMs

Daniel Gruss

Intel Features

e EPT only used if VM active

e Translations tagged in TLB with EPT base pointer

e differentiate TLB-entries of different VMs
e TLB-flush per guest possible

Daniel Gruss

Intel Features

e EPT only used if VM active

e Translations tagged in TLB with EPT base pointer

e differentiate TLB-entries of different VMs
e TLB-flush per guest possible

e VPID: virtual processor ID

Daniel Gruss

Intel Features

e EPT only used if VM active

e Translations tagged in TLB with EPT base pointer

e differentiate TLB-entries of different VMs
e TLB-flush per guest possible

e VPID: virtual processor ID

e unique value for each VM

Daniel Gruss

Intel Features

e EPT only used if VM active

e Translations tagged in TLB with EPT base pointer
e differentiate TLB-entries of different VMs
e TLB-flush per guest possible

e VPID: virtual processor ID

e unique value for each VM
e translations tagged in TLB using VPID

Daniel Gruss

[GTBIBIBI5|5]5]5]5]5]5]5]5 M [M-1 3[3[3|2[2|2]2[2]2[2|2[2]2[T[T[T[T[T[T[T[T[T]T
3(21 098755|4|3‘2|1‘ 2[1 o|9|a|7|5‘5|4‘321 0/9(8|7/6/5/4/3|21/0/9|8|7/6|5/4/3|2[1/0
2/A| EPT [EPT
Reserved Address of EPT PML4 table Rsvd. g /|PWL-| PS EPTP3
D| 1 | MT
X 3
Ignored Rsvd. Address of EPT page-directory-pointer table Ingg IngA Reserved)§w R p[::‘slgftb
S PML4E:
\ Ignored 0/0|0] not
7 present
sl I3 Physical : PDPTE:
V| Ign. 3 Ignored Rsvd. address of Reserved Ingﬁ DIA[1 E %ZT XW|R| 1GB
E 3 1GB page ’ T page
x| PDPTE:
Ignored Rsvd. Address of EPT page directory ng ul ngA 0| Rsvd. |XW|R d_pagte
i irectory
S PDTPE:
\] Ignored 0(0(0 not
€ present
\Sl Ign. g Ignored Rsvd. Physical address Reserved lg|x D|A|1 rl’ EPT X |W|R IZ’II?‘IEB
e i of 2MB page nju Al M page
Ll PDE:
Ignored Rsvd. Address of EPT page table ng U ngA 0| Rsvd. |XW|R| page
1 table
S PDE:
\ Ignored 0/0(0 not
€ present
Sliglp|S g PTE:
V|9 Pls| tgnored Rsvd. Physical address of 4KB page 9% |l g|F| ST [xWwiR| 4KB
£[™Ms|s | nT page
S PTE:
\ Ignored 0/0|0 not
£ present

Fiaure 28-1 Formats of EPTP and EPT Paaina-Structure Entrias

Setting up a hypervisor

1. Enable VMX via CR4

Daniel Gruss

Setting up a hypervisor

1. Enable VMX via CR4
2. Allocate a VMXON region and use the VMXON instruction

Daniel Gruss

Setting up a hypervisor

1. Enable VMX via CR4
2. Allocate a VMXON region and use the VMXON instruction

3. Allocate an MSR Bitmap region (we don't want a trap for all MSRs)

Daniel Gruss

Setting up a hypervisor

1. Enable VMX via CR4

2. Allocate a VMXON region and use the VMXON instruction

3. Allocate an MSR Bitmap region (we don't want a trap for all MSRs)
4

. Use VMCLEAR instruction

Daniel Gruss

Setting up a hypervisor

o~ L=

Enable VMX via CR4

Allocate a VMXON region and use the VMXON instruction

Allocate an MSR Bitmap region (we don't want a trap for all MSRs)
Use VMCLEAR instruction

Execute VMPTRLD to make a VMCS the “current VMCS"

Daniel Gruss

Setting up a hypervisor

S N

Enable VMX via CR4

Allocate a VMXON region and use the VMXON instruction

Allocate an MSR Bitmap region (we don't want a trap for all MSRs)
Use VMCLEAR instruction

Execute VMPTRLD to make a VMCS the “current VMCS”

Allocate a VMCS region and set up the VMCS (using VMWRITES)

Daniel Gruss

Setting up a hypervisor

No o bk~ o=

Enable VMX via CR4

Allocate a VMXON region and use the VMXON instruction

Allocate an MSR Bitmap region (we don't want a trap for all MSRs)
Use VMCLEAR instruction

Execute VMPTRLD to make a VMCS the “current VMCS”

Allocate a VMCS region and set up the VMCS (using VMWRITES)
Use the VMLAUNCH

Daniel Gruss

What if we can’t do something in the Guest?

Similar problem as with Userspace-Kernelspace Isolation:

1. user needs help for some operations (e.g., HW interaction)

Daniel Gruss

What if we can’t do something in the Guest?

Similar problem as with Userspace-Kernelspace Isolation:

1. user needs help for some operations (e.g., HW interaction)

— can use a syscall!

Daniel Gruss

What if we can’t do something in the Guest?

Similar problem as with Userspace-Kernelspace Isolation:

1. user needs help for some operations (e.g., HW interaction)
— can use a syscall!

2. What about VMs?

Daniel Gruss

What if we can’t do something in the Guest?

Similar problem as with Userspace-Kernelspace Isolation:

1. user needs help for some operations (e.g., HW interaction)
— can use a syscall!
2. What about VMs?

3. Same concept different level:

Daniel Gruss

What if we can’t do something in the Guest?

Similar problem as with Userspace-Kernelspace Isolation:

user needs help for some operations (e.g., HW interaction)

can use a syscall!
What about VMs?

Same concept different level:

b w v |oe

Hypercalls!

Daniel Gruss

What if we can’t do something in the Guest?

Similar problem as with Userspace-Kernelspace Isolation:

user needs help for some operations (e.g., HW interaction)

can use a syscall!
What about VMs?

Same concept different level:

b w v |oe

Hypercalls!

Daniel Gruss

What if we can’t do something in the Guest?

Similar problem as with Userspace-Kernelspace Isolation:

1. user needs help for some operations (e.g., HW interaction)

— can use a syscall!
2. What about VMs?
3. Same concept different level:

— Hypercalls! via the vmcall instruction

Daniel Gruss

Virtualization: Trend 2010s — 20224

Optimization

e Full virtualization often not needed

Daniel Gruss

Virtualization: Trend 2010s — 20224

Optimization

e Full virtualization often not needed

e Serverless / Edge Computing (it's still a form of cloud computing)

Daniel Gruss

Virtualization: Trend 2010s — 20224

Optimization

e Full virtualization often not needed
e Serverless / Edge Computing (it's still a form of cloud computing)

e Virtualization is not for free — why not skip it and just use OS level isolation?

Daniel Gruss

Virtualization: Trend 2010s — 20224

Optimization

e Full virtualization often not needed
e Serverless / Edge Computing (it's still a form of cloud computing)
e Virtualization is not for free — why not skip it and just use OS level isolation?

e Context switches between processes are expensive — why not skip process isolation and

just use language-level isolation?

Daniel Gruss

This course: hardware-assisted virtualization

Cloud Operating Systems — Hardware-assisted virtualization

Daniel Gruss

i Talk to your kids about hypervisors...before someone else does

WEEKTWO VEEK Six [VEEK Twene |
IT SAYS My VMICS DUE TO PHYSICAL YOU HAVEN'T ANSWERED.
's| [MEMORY ISSUES, T™M YOUR PHONE. IN DAYS,

HEY, ITs YOour CousIN IS BROKEN. \JHAT'S
T GOT A NEW COMFUTER A MCS? WHERE | | LEAVING ID MAPPING CANT SiEEP
BUT WANT TO HOOK. CAN T LOCK THAT UP| FOR EPT HOOKING, (MUsT \JRITE
BOOTKIT.

INSTALL A

”HYPERVISOR™? LEMME e
SHoW You LOR TL
sire. ~ THE HOLY \GPLITTING.
SCRIPTURE OF VHOH.
OUR LORD AND SAVIOUR =

NTEL(R) THE FIANDAL

CAN YOu HELWP ME \,\} y,
HMM, UH
™ (M “In \\1

PARENTS: TALK T YOUR
KIDS ABCUT HYPERVISORS. .

BEFORE. SOMEBODY EL<g DOES.

CloudOS: the third time

e Seminar-style

m Daniel Gruss

CloudOS: the third time

e Seminar-style

e You code

m Daniel Gruss

CloudOS: the third time

e Seminar-style
e You code

e You plan

m Daniel Gruss

CloudOS: the third time

e Seminar-style

You code

You plan

You present

m Daniel Gruss

Team

Fabian Rauscher, Jonas Juffinger, Daniel Gruss

Daniel Gruss

Grading Scale

e 100 P. = 100%

Daniel Gruss

Grading Scale

e 100 P. = 100%
e 8375P. —1

Daniel Gruss

Grading Scale

e 100 P. = 100%
e 8375P. —1
e 715P. —» 2

Daniel Gruss

Grading Scale

100 P. = 100%
e 375 P. —1
P —2

e 625P. — 3

Daniel Gruss

Grading Scale

100 P. = 100%
e 375 P. —1
P —2

e 625P. — 3
50P. — 4

Daniel Gruss

Teams

e 15 participants — 4 teams with each 3-4 participants (default)

Daniel Gruss

Teams

e 15 participants — 4 teams with each 3-4 participants (default)
e 5 ECTS = 500h with 125h per team member

Daniel Gruss

Teams

e 15 participants — 4 teams with each 3-4 participants (default)
e 5 ECTS = 500h with 125h per team member
e Team of 3?7 Same effort but +5 points

Daniel Gruss

Teams

15 participants — 4 teams with each 3-4 participants (default)
5 ECTS = 500h with 125h per team member
Team of 37 Same effort but +5 points

Team of 27 Same effort but +10 points

Daniel Gruss

Teams

15 participants — 4 teams with each 3-4 participants (default)
5 ECTS = 500h with 125h per team member
Team of 37 Same effort but +5 points

Team of 27 Same effort but +10 points

— send us your registration until Monday March 11

Daniel Gruss

e Deadlines: Friday 23:59

Daniel Gruss

e Deadlines: Friday 23:59

e Grace Period: 48 hours but no support

Daniel Gruss

Timeline & Deadlines

e 22.3. Structure Setup
Estimated Team Effort: 125h, Points: 5P.

Daniel Gruss

Timeline & Deadlines

e 22.3. Structure Setup
Estimated Team Effort: 125h, Points: 5P.

e 26.4. Executing Guest Code + Video Output
Estimated Team Effort: 125h, Points: 15P. — AG1

Daniel Gruss

Timeline & Deadlines

e 22.3. Structure Setup
Estimated Team Effort: 125h, Points: 5P.

e 26.4. Executing Guest Code + Video Output
Estimated Team Effort: 125h, Points: 15P. — AG1

e 3.5. Interrupt 4+ Emulate PIC 4 Public Feature Bidding
Estimated Team Effort: 100h, Points: 5P.

Daniel Gruss

Timeline & Deadlines

e 22.3. Structure Setup
Estimated Team Effort: 125h, Points: 5P.

e 26.4. Executing Guest Code + Video Output
Estimated Team Effort: 125h, Points: 15P. — AG1

e 3.5. Interrupt 4+ Emulate PIC 4 Public Feature Bidding
Estimated Team Effort: 100h, Points: 5P.

e 24.5. Boot Guest SWEB Shell + Virtualize Disk + Private Feature Bidding
Estimated Team Effort: 75h, Points: 35P. — AG2

Daniel Gruss

Timeline & Deadlines

e 22.3. Structure Setup
Estimated Team Effort: 125h, Points: 5P.

e 26.4. Executing Guest Code + Video Output
Estimated Team Effort: 125h, Points: 15P. — AG1

e 3.5. Interrupt 4+ Emulate PIC 4 Public Feature Bidding
Estimated Team Effort: 100h, Points: 5P.

e 24.5. Boot Guest SWEB Shell + Virtualize Disk + Private Feature Bidding
Estimated Team Effort: 75h, Points: 35P. — AG2

e 31.5. Feature PoC in Booted Guest SWEB
Estimated Team Effort: 75h, Points: 10P.

Daniel Gruss

Timeline & Deadlines

22.3. Structure Setup

Estimated Team Effort: 125h, Points: 5P.

26.4. Executing Guest Code + Video Output

Estimated Team Effort: 125h, Points: 15P. — AG1

3.5. Interrupt + Emulate PIC + Public Feature Bidding

Estimated Team Effort: 100h, Points: 5P.

24.5. Boot Guest SWEB Shell + Virtualize Disk + Private Feature Bidding
Estimated Team Effort: 75h, Points: 35P. — AG2

31.5. Feature PoC in Booted Guest SWEB

Estimated Team Effort: 75h, Points: 10P.

14.6. Feature Implementation Done + Final Presentation and Demo in Booted Guest
SWEB

Estimated Team Effort: 75h, Points: 30P. — AG3

Daniel Gruss

Timeline & Deadlines

22.3. Structure Setup
Estimated Team Effort: 125h, Points: 5P.

26.4. Executing Guest Code + Video Output

Estimated Team Effort: 125h, Points: 15P. — AG1

3.5. Interrupt + Emulate PIC + Public Feature Bidding

Estimated Team Effort: 100h, Points: 5P.

24.5. Boot Guest SWEB Shell + Virtualize Disk + Private Feature Bidding
Estimated Team Effort: 75h, Points: 35P. — AG2

31.5. Feature PoC in Booted Guest SWEB

Estimated Team Effort: 75h, Points: 10P.

14.6. Feature Implementation Done + Final Presentation and Demo in Booted Guest
SWEB
Estimated Team Effort: 75h, Points: 30P. — AG3

14.6. Successful Live Presentation at 21:00, Bonus Points: 5P.

Daniel Gruss

