
System Level Programming

Daniel Gruss

2023-03-03



My Code

void fun(size_t x)

{

for (size_t i = 0; i < 1000000ULL; ++i)

counter += (size_t)x;

}

int main()

{

pthread_t t;

pthread_create(&t,0,(void*(*)(void*))&fun,(void *)1);

pthread_create(&t,0,(void*(*)(void*))&fun,(void *)2);

mypause();

printf("counter = %zu\n",counter);

return 0;

}









With printf debugging

T1 adds 1 to 550209

T1 adds 1 to 550210

T1 adds 1 to 550211

T1 adds 1 to 550212

T1 adds 1 to 550213

T1 adds 1 to 550214

T1 adds 1 to 550215 <-- look

T2 adds 2 to 550122 <-- at

T2 adds 2 to 550125 <-- these

T2 adds 2 to 550127

T2 adds 2 to 550129

T2 adds 2 to 550131

T2 adds 2 to 550133





Let's check the manual



























How toilet locks work

1. Enter public toilet room

2. Use toilet door

2.1 Check color indicator (is it free?)
2.2 If toilet is free:

2.2.1 Pass through door + lock door

2.3 Else → back to step 2.1

3. Use toilet

4. Use toilet door again

4.1 Pass through door + unlock door



How toilet locks work

1. Enter public toilet room

2. Use toilet door

2.1 Check color indicator (is it free?)
2.2 If toilet is free:

2.2.1 Pass through door + lock door

2.3 Else → back to step 2.1

3. Use toilet

4. Use toilet door again

4.1 Pass through door + unlock door



How toilet locks work

1. Enter public toilet room

2. Use toilet door

2.1 Check color indicator (is it free?)
2.2 If toilet is free:

2.2.1 Pass through door + lock door

2.3 Else → back to step 2.1

3. Use toilet

4. Use toilet door again

4.1 Pass through door + unlock door



How toilet locks work

1. Enter public toilet room

2. Use toilet door

2.1 Check color indicator (is it free?)
2.2 If toilet is free:

2.2.1 Pass through door + lock door

2.3 Else → back to step 2.1

3. Use toilet

4. Use toilet door again

4.1 Pass through door + unlock door



How toilet locks work

1. Enter public toilet room

2. Use toilet door

2.1 Check color indicator (is it free?)
2.2 If toilet is free:

2.2.1 Pass through door + lock door

2.3 Else → back to step 2.1

3. Use toilet

4. Use toilet door again

4.1 Pass through door + unlock door



How toilet locks work

1. Enter public toilet room

2. Use toilet door

2.1 Check color indicator (is it free?)

2.2 If toilet is free:

2.2.1 Pass through door + lock door

2.3 Else → back to step 2.1

3. Use toilet

4. Use toilet door again

4.1 Pass through door + unlock door



How toilet locks work

1. Enter public toilet room

2. Use toilet door

2.1 Check color indicator (is it free?)
2.2 If toilet is free:

2.2.1 Pass through door + lock door

2.3 Else → back to step 2.1

3. Use toilet

4. Use toilet door again

4.1 Pass through door + unlock door



How toilet locks work

1. Enter public toilet room

2. Use toilet door

2.1 Check color indicator (is it free?)
2.2 If toilet is free:

2.2.1 Pass through door + lock door

2.3 Else → back to step 2.1

3. Use toilet

4. Use toilet door again

4.1 Pass through door + unlock door



How toilet locks work

1. Enter public toilet room

2. Use toilet door

2.1 Check color indicator (is it free?)
2.2 If toilet is free:

2.2.1 Pass through door + lock door

2.3 Else → back to step 2.1

3. Use toilet

4. Use toilet door again

4.1 Pass through door + unlock door



How toilet locks work

1. Enter public toilet room

2. Use toilet door

2.1 Check color indicator (is it free?)
2.2 If toilet is free:

2.2.1 Pass through door + lock door

2.3 Else → back to step 2.1

3. Use toilet

4. Use toilet door again

4.1 Pass through door + unlock door



How toilet locks work

1. Enter public toilet room

2. Use toilet door

2.1 Check color indicator (is it free?)
2.2 If toilet is free:

2.2.1 Pass through door + lock door

2.3 Else → back to step 2.1

3. Use toilet

4. Use toilet door again

4.1 Pass through door + unlock door



How toilet locks work

1. Enter public toilet room

2. Use toilet door

2.1 Check color indicator (is it free?)
2.2 If toilet is free:

2.2.1 Pass through door + lock door

2.3 Else → back to step 2.1

3. Use toilet

4. Use toilet door again

4.1 Pass through door + unlock door



Let’s code this!

Use toilet door (entry):

1. Check color indicator (is it free?)

2. If toilet is free:

2.1 Pass through door + lock door

3. Else → back to step 2.1

while (toilet_indicator != FREE)

{

// busy wait - doing nothing

// ugh, it’s really urgent!

// + i’m wasting time here

}

toilet_indicator = IN_USE;



Spinlock

// return 0 if locking was successful

size_t lock(size_t* lock) {

if (*lock == 0) // not locked

{

*lock = 1; // now locked

return 0;

}

return 1;

}

POSIX: 0 means success!



Spinlock

size_t lock(size_t* lock) {

if (*lock == 0) // not locked

{

*lock = 1; // now locked

return 0;

}

return 1;

}

Any problems here?

It’s not spinning!



Spinlock

size_t lock(size_t* lock) {

if (*lock == 0) // not locked

{

*lock = 1; // now locked

return 0;

}

return 1;

}

Any problems here? It’s not spinning!



Spinlock

size_t lock(size_t* lock) {

while (*lock == 1) // not locked

{

// busy wait

}

*lock = 1; // now locked

return 0;

}

Any problems here?

It’s not atomic!



Spinlock

size_t lock(size_t* lock) {

while (*lock == 1) // not locked

{

// busy wait

}

*lock = 1; // now locked

return 0;

}

Any problems here? It’s not atomic!



POSIX to the rescue

#include <pthread.h>

int pthread_spin_lock(pthread_spinlock_t *lock);

int pthread_spin_unlock(pthread_spinlock_t *lock);

The pthread spin lock() function locks the spin lock referred to by lock. If the spin

lock is currently unlocked, the calling thread acquires the lock immediately. If the spin lock is

currently locked by another thread, the calling thread spins, testing the lock until it becomes

available, at which point the calling thread acquires the lock.



POSIX to the rescue

#include <pthread.h>

int pthread_spin_lock(pthread_spinlock_t *lock);

int pthread_spin_unlock(pthread_spinlock_t *lock);

The pthread spin lock() function locks the spin lock referred to by lock. If the spin

lock is currently unlocked, the calling thread acquires the lock immediately. If the spin lock is

currently locked by another thread, the calling thread spins, testing the lock until it becomes

available, at which point the calling thread acquires the lock.



Spinlocks are not efficient

Idea: Instead of busy waiting,

� put thread to sleep,

� keep a list of sleeping threads,

� wake up a sleeping thread when unlocking.

→ We call this a Mutex!



Spinlocks are not efficient

Idea: Instead of busy waiting,

� put thread to sleep,

� keep a list of sleeping threads,

� wake up a sleeping thread when unlocking.

→ We call this a Mutex!



Spinlocks are not efficient

Idea: Instead of busy waiting,

� put thread to sleep,

� keep a list of sleeping threads,

� wake up a sleeping thread when unlocking.

→ We call this a Mutex!



Spinlocks are not efficient

Idea: Instead of busy waiting,

� put thread to sleep,

� keep a list of sleeping threads,

� wake up a sleeping thread when unlocking.

→ We call this a Mutex!



Spinlocks are not efficient

Idea: Instead of busy waiting,

� put thread to sleep,

� keep a list of sleeping threads,

� wake up a sleeping thread when unlocking.

→ We call this a Mutex!



Spinlocks are not efficient

Idea: Instead of busy waiting,

� put thread to sleep,

� keep a list of sleeping threads,

� wake up a sleeping thread when unlocking.

→ We call this a Mutex!



Spinlocks are not efficient

Idea: Instead of busy waiting,

� put thread to sleep,

� keep a list of sleeping threads,

� wake up a sleeping thread when unlocking.

→ We call this a Mutex!



Spinlocks are not efficient

Idea: Instead of busy waiting,

� put thread to sleep,

� keep a list of sleeping threads,

� wake up a sleeping thread when unlocking.

→ We call this a Mutex!



Mutexes

#include <pthread.h>

int pthread_mutex_lock(pthread_mutex_t *mutex);

int pthread_mutex_unlock(pthread_mutex_t *mutex);

The mutex object referenced by mutex shall be locked by a call to pthread mutex lock()

that returns zero. If the mutex is already locked by another thread, the calling thread shall

block until the mutex becomes available. This operation shall return with the mutex object

referenced by mutex in the locked state with the calling thread as its owner.



Mutexes

#include <pthread.h>

int pthread_mutex_lock(pthread_mutex_t *mutex);

int pthread_mutex_unlock(pthread_mutex_t *mutex);

The mutex object referenced by mutex shall be locked by a call to pthread mutex lock()

that returns zero. If the mutex is already locked by another thread, the calling thread shall

block until the mutex becomes available. This operation shall return with the mutex object

referenced by mutex in the locked state with the calling thread as its owner.





sometimes threads just want to wait for an event



How to implement events?

while (go_eat == 0)

{

pthread_mutex_lock(&food_ready_mutex);

if (food_ready)

go_eat = 1;

pthread_mutex_unlock(&food_ready_mutex);

}

goEat();

Wait, that’s busy wait AGAIN!



Condition Variables

� Synchronization mechanism

� Not inherently thread-safe:

� Using mutex to make it thread-safe!

� Three main operations:

1. wait - wait for an event

2. signal - wake up 1 waiting thread

3. broadcast - wake up ALL waiting threads



Condition Variables

� Synchronization mechanism

� Not inherently thread-safe:

� Using mutex to make it thread-safe!

� Three main operations:

1. wait - wait for an event

2. signal - wake up 1 waiting thread

3. broadcast - wake up ALL waiting threads



Condition Variables

� Synchronization mechanism

� Not inherently thread-safe:

� Using mutex to make it thread-safe!

� Three main operations:

1. wait - wait for an event

2. signal - wake up 1 waiting thread

3. broadcast - wake up ALL waiting threads



Condition Variables

� Synchronization mechanism

� Not inherently thread-safe:

� Using mutex to make it thread-safe!

� Three main operations:

1. wait - wait for an event

2. signal - wake up 1 waiting thread

3. broadcast - wake up ALL waiting threads



Condition Variables

� Synchronization mechanism

� Not inherently thread-safe:

� Using mutex to make it thread-safe!

� Three main operations:

1. wait - wait for an event

2. signal - wake up 1 waiting thread

3. broadcast - wake up ALL waiting threads



Condition Variables

� Synchronization mechanism

� Not inherently thread-safe:

� Using mutex to make it thread-safe!

� Three main operations:

1. wait - wait for an event

2. signal - wake up 1 waiting thread

3. broadcast - wake up ALL waiting threads



Condition Variables

� Synchronization mechanism

� Not inherently thread-safe:

� Using mutex to make it thread-safe!

� Three main operations:

1. wait - wait for an event

2. signal - wake up 1 waiting thread

3. broadcast - wake up ALL waiting threads



Condition Variables

#include <pthread.h>

int pthread_cond_wait(pthread_cond_t *restrict cond, pthread_mutex_t *restrict

mutex);

The pthread cond wait() functions shall block on a condition variable. The application

shall ensure that these functions are called with mutex locked by the calling thread. These

functions atomically release mutex and cause the calling thread to block on the condition

variable cond. Upon return, the mutex shall have been locked and shall be owned by the

calling thread.



Condition Variables

#include <pthread.h>

int pthread_cond_wait(pthread_cond_t *restrict cond, pthread_mutex_t *restrict

mutex);

The pthread cond wait() functions shall block on a condition variable. The application

shall ensure that these functions are called with mutex locked by the calling thread. These

functions atomically release mutex and cause the calling thread to block on the condition

variable cond. Upon return, the mutex shall have been locked and shall be owned by the

calling thread.



pthread cond wait pseudo code

int pthread_cond_wait(pthread_cond_t *restrict cond, pthread_mutex_t *restrict

mutex)

{

// atomic begin

add_myself_to_sleepers_list();

pthread_mutex_unlock(mutex);

go_to_sleep();

// atomic end

// wait to be woken up

pthread_mutex_lock(mutex);

}



Condition Variables

#include <pthread.h>

int pthread_cond_broadcast(pthread_cond_t *cond);

int pthread_cond_signal(pthread_cond_t *cond);

The pthread cond broadcast() function shall unblock all threads currently blocked on

the specified condition variable cond.

The pthread cond signal() function shall unblock at least one of the threads that are

blocked on the specified condition variable cond (if any threads are blocked on cond).



Condition Variables

#include <pthread.h>

int pthread_cond_broadcast(pthread_cond_t *cond);

int pthread_cond_signal(pthread_cond_t *cond);

The pthread cond broadcast() function shall unblock all threads currently blocked on

the specified condition variable cond.

The pthread cond signal() function shall unblock at least one of the threads that are

blocked on the specified condition variable cond (if any threads are blocked on cond).















Semaphores

� stores a numerical value ≥ 0

� two operations:

1. wait = decrement

2. post = increment

→ what happens when decrementing at value 0?

→ semaphore blocks



Semaphores

� stores a numerical value ≥ 0

� two operations:

1. wait = decrement

2. post = increment

→ what happens when decrementing at value 0?

→ semaphore blocks



Semaphores

� stores a numerical value ≥ 0

� two operations:

1. wait = decrement

2. post = increment

→ what happens when decrementing at value 0?

→ semaphore blocks



Semaphores

� stores a numerical value ≥ 0

� two operations:

1. wait = decrement

2. post = increment

→ what happens when decrementing at value 0?

→ semaphore blocks



Semaphores

� stores a numerical value ≥ 0

� two operations:

1. wait = decrement

2. post = increment

→ what happens when decrementing at value 0?

→ semaphore blocks



Semaphores

� stores a numerical value ≥ 0

� two operations:

1. wait = decrement

2. post = increment

→ what happens when decrementing at value 0?

→ semaphore blocks



Semaphore vs Mutex

Mutex is basically a semaphore with

� numerical values 0 (locked) or 1 (free)

1. wait = lock

2. post = unlock



Semaphore vs Mutex

Mutex is basically a semaphore with

� numerical values 0 (locked) or 1 (free)

1. wait = lock

2. post = unlock



Semaphore vs Mutex

Mutex is basically a semaphore with

� numerical values 0 (locked) or 1 (free)

1. wait = lock

2. post = unlock



Semaphore vs CVs

Synchronization of events with semaphores:

� semaphores are not owned/held by any thread

1. wait ≈ cond wait

2. post ≈ cond signal



Semaphore vs CVs

Synchronization of events with semaphores:

� semaphores are not owned/held by any thread

1. wait ≈ cond wait

2. post ≈ cond signal



Semaphore vs CVs

Synchronization of events with semaphores:

� semaphores are not owned/held by any thread

1. wait ≈ cond wait

2. post ≈ cond signal








