System Level Programming

Daniel Gruss
2023-04-23

void fun(size_t x)
{
for (size_t i = 0; i < 1000000ULL; ++1i)
counter += (size_t)x;

int main ()

pthread_t t;
pthread_create (&t, 0, (voidx (x) (voidx)) &fun, (void «)1);
pthread_create (&t, 0, (voidx (x) (voidx)) &fun, (void x)2);
mypause () ;

printf ("counter = %$zu\n",counter);

return 0;

With printf debugging

Tl
Tl
Tl
Tl
Tl
T1
Tl

adds
adds
adds
adds
adds
adds
adds
T2
T2
T2
T2
T2
T2

to
to
to
to
to
to

e e

adds
adds
adds
adds
adds
adds

550209
550210
550211
550212
550213
550214
550215 <-- look

to
to
to
to
to
to

550122 <-- at
550125 <-- these
550127

550129

550131

550133

@ Intel® 64 and |A-32 /
Volumes: 1, 2A, 2B, :

Last updated: November 16, 2020

» File:
325462-sdm-vol-1-2abcd-3abcd.pdf

» Size:
56.59 MB

Let's check the manual

8.1.1 Guaranteed Atomic Operations

The Intel486 processor (and newer processors since) guarantees that the following basic memory operations will
always be carried out atomically:

* Reading or writing a byte
* Reading or writing a word aligned on a 16-bit boundary
* Reading or writing a doubleword aligned on a 32-bit boundary

The Pentium processor (and newer processors since) guarantees that the following additional memory operations
will always be carried out atomically:

* Reading or writing a quadword aligned on a 64-bit boundary
* 16-bit accesses to uncached memory locations that fit within a 32-bit data bus

The P6 family processors (and newer processors since) guarantee that the following additional memory operation
will always be carried out atomically:

* Unaligned 16-, 32-, and 64-bit accesses to cached memory that fit within a cache line

INCREMENTS ARE NOT ATOMIC?

How toilet locks work

[y

. Enter public toilet room

] r = 2. Use toilet door

o 2.1 Check color indicator (is it free?)
2.2 If toilet is free:

2.2.1 Pass through door + lock door
! ? 2.3 Else — back to step 2.1
. Use toilet

w

4. Use toilet door again

4.1 Pass through door + unlock door

Use toilet door (entry): while (toilet_indicator != FREE)

1. Check color indicator (is it free?) (

// busy wait - doing nothing
2. If toilet is free: // ugh, it’s really urgent!
2.1 Pass through door + lock door

}
3. Else — back to step 21 toilet_indicator = IN_USE;

// + i’m wasting time here

Spinlock

// return 0 if locking was successful

N [] P size_t lock(size_t* lock) {
if (xlock == 0) // not locked
{

xlock = 1; // now locked

return 0;
}
return 1;

}
POSIX: 0 means success!

Spinlock

size_t lock(size_tx lock) {

if (xlock == 0) // not locked
{
xlock = 1; // now locked
‘ return 0;
}
return 1;

}
Any problems here? It's not spinning!

Spinlock

size_t lock(size_tx lock) {

‘ while (xlock == 1) // not locked
{

—nn— // busy wait
}
xlock = 1; // now locked
return 0;
}
Any problems here? It's not atomic!

POSIX to the rescue

#include <pthread.h>

int pthread_spin_lock (pthread_spinlock_t =xlock);

int pthread_spin_unlock (pthread_spinlock_t =xlock);

The pthread_spin_lock () function locks the spin lock referred to by lock. If the spin
lock is currently unlocked, the calling thread acquires the lock immediately. If the spin lock is
currently locked by another thread, the calling thread spins, testing the lock until it becomes
available, at which point the calling thread acquires the lock.

Spinlocks are not efficient

Q Idea: Instead of busy waiting,
OO e put thread to sleep,
e keep a list of sleeping threads,
1] N g

e wake up a sleeping thread when unlocking.

— We call this a Mutex!

#include <pthread.h>
int pthread_mutex_lock (pthread_mutex_t »*mutex);
int pthread_mutex_unlock (pthread_mutex_t smutex);

The mutex object referenced by mutex shall be locked by a call to pthread mutex_lock ()
that returns zero. If the mutex is already locked by another thread, the calling thread shall
block until the mutex becomes available. This operation shall return with the mutex object
referenced by mutex in the locked state with the calling thread as its owner.

Ly 1

sometimes threads just want to wait for an event

How to implement events?

while (go_eat == 0)
{
pthread_mutex_lock (&food_ready_mutex);
if (food_ready)
go_eat = 1;
pthread_mutex_unlock (&food_ready_mutex) ;

}
goEat () ;

Wait, that’s busy wait AGAIN!

Condition V bles

e Synchronization mechanism
e Not inherently thread-safe:

e Using mutex to make it thread-safe!
e Three main operations:

1. wait - wait for an event
2. signal - wake up 1 waiting thread
3. broadcast - wake up ALL waiting threads

Condition Variables

#include <pthread.h>
int pthread_cond_wait (pthread_cond_t *restrict cond, pthread_mutex_t xrestrict

mutex) ;
The pthread_cond.wait () functions shall block on a condition variable. The application
shall ensure that these functions are called with mutex locked by the calling thread. These
functions atomically release mutex and cause the calling thread to block on the condition
variable cond. Upon return, the mutex shall have been locked and shall be owned by the
calling thread.

pthread_cond _wait pseudo code

int pthread_cond_wait (pthread_cond_t *restrict cond, pthread_mutex_t =*restrict

mutex)

// atomic begin
add_myself_to_sleepers_list();
pthread_mutex_unlock (mutex) ;
go_to_sleep();

// atomic end

// wait to be woken up
pthread_mutex_lock (mutex) ;

Condition Variables

#include <pthread.h>
int pthread_cond_broadcast (pthread_cond_t =xcond);
int pthread_cond_signal (pthread_cond_t =*cond);

The pthread_cond_broadcast () function shall unblock all threads currently blocked on
the specified condition variable cond.

The pthread_cond_signal () function shall unblock at least one of the threads that are
blocked on the specified condition variable cond (if any threads are blocked on cond).

A1 b C e

Eifmmﬁ#¥

TWYY%%Y%
IR 3

e stores a numerical value > 0

e two operations:

1. wait = decrement
2. post = increment

— what happens when decrementing at value 07

— semaphore blocks

Semaphore vs Mutex

Mutex is basically a semaphore with

e numerical values 0 (locked) or 1 (free)

1. wait = lock

2. post = unlock

Semaphore vs CVs

Synchronization of events with semaphores:

e semaphores are not owned/held by any thread

1. wait = cond_wait

2. post = cond_signal

