
S C I E N C E
P A S S I O N

T E C H N O L O G Y

SoC Debugging Tutorial

Barbara Gigerl, Rishub Nagpal

October 19th, 2022

www.iaik.tugraz.at

Overview

Simulation of hardware designs (Icarus, Verilator,
GHDL)

Using AXI VIP

Using ILA Cores

Debugging SW in Vitis

1 / 25

Can’t decide?

2 / 25

Can’t decide?

2 / 25

Simulation of hardware designs
Icarus, Verilator, GHDL

Prerequisites

When should I use this method?

I have a small hardware design and want to get a rough idea of the core
functionality

No so�ware involved

I want to find functional bugs in my hardware design

Testbench

Hardware
design

Simulator (VCD)
Trace

3 / 25

Prerequisites

When should I use this method?

I have a small hardware design and want to get a rough idea of the core
functionality

No so�ware involved

I want to find functional bugs in my hardware design

Testbench

Hardware
design

Simulator (VCD)
Trace

3 / 25

Prerequisites

When should I use this method?

I have a small hardware design and want to get a rough idea of the core
functionality

No so�ware involved

I want to find functional bugs in my hardware design

Testbench

Hardware
design

Simulator (VCD)
Trace

3 / 25

Prerequisites

When should I use this method?

I have a small hardware design and want to get a rough idea of the core
functionality

No so�ware involved

I want to find functional bugs in my hardware design

Testbench

Hardware
design

Simulator (VCD)
Trace

3 / 25

Prerequisites

When should I use this method?

I have a small hardware design and want to get a rough idea of the core
functionality

No so�ware involved

I want to find functional bugs in my hardware design

Testbench

Hardware
design

Simulator (VCD)
Trace

3 / 25

Prerequisites

When should I use this method?

I have a small hardware design and want to get a rough idea of the core
functionality

No so�ware involved

I want to find functional bugs in my hardware design

Testbench

Hardware
design

Simulator (VCD)
Trace

3 / 25

Prerequisites

When should I use this method?

I have a small hardware design and want to get a rough idea of the core
functionality

No so�ware involved

I want to find functional bugs in my hardware design

Testbench

Hardware
design

Simulator (VCD)
Trace

3 / 25

Prerequisites

When should I use this method?

I have a small hardware design and want to get a rough idea of the core
functionality

No so�ware involved

I want to find functional bugs in my hardware design

Testbench

Hardware
design

Simulator

(VCD)
Trace

3 / 25

Prerequisites

When should I use this method?

I have a small hardware design and want to get a rough idea of the core
functionality

No so�ware involved

I want to find functional bugs in my hardware design

Testbench

Hardware
design

Simulator (VCD)
Trace

3 / 25

Hardware design and testbench

Example: Fibonacci numbers
https:
//extgit.iaik.tugraz.at/sip/tutorials/-/tree/master/fibonacci

Testbench in Verilog

Apply test data to input ports

Create clock/reset signals

Write to log file

...

4 / 25

https://extgit.iaik.tugraz.at/sip/tutorials/-/tree/master/fibonacci
https://extgit.iaik.tugraz.at/sip/tutorials/-/tree/master/fibonacci

Hardware design and testbench

Example: Fibonacci numbers
https:
//extgit.iaik.tugraz.at/sip/tutorials/-/tree/master/fibonacci

Testbench in Verilog

Apply test data to input ports

Create clock/reset signals

Write to log file

...

4 / 25

https://extgit.iaik.tugraz.at/sip/tutorials/-/tree/master/fibonacci
https://extgit.iaik.tugraz.at/sip/tutorials/-/tree/master/fibonacci

Hardware design and testbench

Example: Fibonacci numbers
https:
//extgit.iaik.tugraz.at/sip/tutorials/-/tree/master/fibonacci

Testbench in Verilog

Apply test data to input ports

Create clock/reset signals

Write to log file

...

4 / 25

https://extgit.iaik.tugraz.at/sip/tutorials/-/tree/master/fibonacci
https://extgit.iaik.tugraz.at/sip/tutorials/-/tree/master/fibonacci

Hardware design and testbench

Example: Fibonacci numbers
https:
//extgit.iaik.tugraz.at/sip/tutorials/-/tree/master/fibonacci

Testbench in Verilog

Apply test data to input ports

Create clock/reset signals

Write to log file

...

4 / 25

https://extgit.iaik.tugraz.at/sip/tutorials/-/tree/master/fibonacci
https://extgit.iaik.tugraz.at/sip/tutorials/-/tree/master/fibonacci

Hardware design and testbench

Example: Fibonacci numbers
https:
//extgit.iaik.tugraz.at/sip/tutorials/-/tree/master/fibonacci

Testbench in Verilog

Apply test data to input ports

Create clock/reset signals

Write to log file

...

4 / 25

https://extgit.iaik.tugraz.at/sip/tutorials/-/tree/master/fibonacci
https://extgit.iaik.tugraz.at/sip/tutorials/-/tree/master/fibonacci

Hardware design and testbench

Example: Fibonacci numbers
https:
//extgit.iaik.tugraz.at/sip/tutorials/-/tree/master/fibonacci

Testbench in Verilog

Apply test data to input ports

Create clock/reset signals

Write to log file

...

4 / 25

https://extgit.iaik.tugraz.at/sip/tutorials/-/tree/master/fibonacci
https://extgit.iaik.tugraz.at/sip/tutorials/-/tree/master/fibonacci

Icarus Verilog

http://iverilog.icarus.com/

Simple but slow

Testbench in Verilog or SystemVerilog

Instantiate test module

Create clock and reset control signals

Optional: $display, $dumpfile, $dumpvars, $monitor

iverilog -o <bin_name > <dut >.v <tb >.v
./<bin_name >

5 / 25

http://iverilog.icarus.com/

Icarus Verilog

http://iverilog.icarus.com/

Simple but slow

Testbench in Verilog or SystemVerilog

Instantiate test module

Create clock and reset control signals

Optional: $display, $dumpfile, $dumpvars, $monitor

iverilog -o <bin_name > <dut >.v <tb >.v
./<bin_name >

5 / 25

http://iverilog.icarus.com/

Icarus Verilog

http://iverilog.icarus.com/

Simple but slow

Testbench in Verilog or SystemVerilog

Instantiate test module

Create clock and reset control signals

Optional: $display, $dumpfile, $dumpvars, $monitor

iverilog -o <bin_name > <dut >.v <tb >.v
./<bin_name >

5 / 25

http://iverilog.icarus.com/

Icarus Verilog

http://iverilog.icarus.com/

Simple but slow

Testbench in Verilog or SystemVerilog

Instantiate test module

Create clock and reset control signals

Optional: $display, $dumpfile, $dumpvars, $monitor

iverilog -o <bin_name > <dut >.v <tb >.v
./<bin_name >

5 / 25

http://iverilog.icarus.com/

Icarus Verilog

http://iverilog.icarus.com/

Simple but slow

Testbench in Verilog or SystemVerilog

Instantiate test module

Create clock and reset control signals

Optional: $display, $dumpfile, $dumpvars, $monitor

iverilog -o <bin_name > <dut >.v <tb >.v
./<bin_name >

5 / 25

http://iverilog.icarus.com/

Icarus Verilog

http://iverilog.icarus.com/

Simple but slow

Testbench in Verilog or SystemVerilog

Instantiate test module

Create clock and reset control signals

Optional: $display, $dumpfile, $dumpvars, $monitor

iverilog -o <bin_name > <dut >.v <tb >.v
./<bin_name >

5 / 25

http://iverilog.icarus.com/

Icarus Verilog

http://iverilog.icarus.com/

Simple but slow

Testbench in Verilog or SystemVerilog

Instantiate test module

Create clock and reset control signals

Optional: $display, $dumpfile, $dumpvars, $monitor

iverilog -o <bin_name > <dut >.v <tb >.v
./<bin_name >

5 / 25

http://iverilog.icarus.com/

Icarus Verilog

http://iverilog.icarus.com/

Simple but slow

Testbench in Verilog or SystemVerilog

Instantiate test module

Create clock and reset control signals

Optional: $display, $dumpfile, $dumpvars, $monitor

iverilog -o <bin_name > <dut >.v <tb >.v
./<bin_name >

5 / 25

http://iverilog.icarus.com/

Verilator

https://www.veripool.org/verilator/

Fast but (slightly more) complex

Testbench in C++

Create clock and reset control signals
Use all the C++ features you want
verilated_vcd_c.h for VCD dump support

verilator --trace --cc <dut >.v
cd obj_dir;make -f V<dut >.mk; cd ..
clang ++ -Iobj_dir -I/usr/share/verilator/include verilator_tb.cpp

obj_dir/V<dut >__ALL.a
/usr/share/verilator/include/verilated.cpp
/usr/share/verilator/include/verilated_vcd_c.cpp
-o <bin_name >

./<bin_name >

6 / 25

https://www.veripool.org/verilator/

Verilator

https://www.veripool.org/verilator/

Fast but (slightly more) complex

Testbench in C++

Create clock and reset control signals
Use all the C++ features you want
verilated_vcd_c.h for VCD dump support

verilator --trace --cc <dut >.v
cd obj_dir;make -f V<dut >.mk; cd ..
clang ++ -Iobj_dir -I/usr/share/verilator/include verilator_tb.cpp

obj_dir/V<dut >__ALL.a
/usr/share/verilator/include/verilated.cpp
/usr/share/verilator/include/verilated_vcd_c.cpp
-o <bin_name >

./<bin_name >

6 / 25

https://www.veripool.org/verilator/

Verilator

https://www.veripool.org/verilator/

Fast but (slightly more) complex

Testbench in C++

Create clock and reset control signals
Use all the C++ features you want
verilated_vcd_c.h for VCD dump support

verilator --trace --cc <dut >.v
cd obj_dir;make -f V<dut >.mk; cd ..
clang ++ -Iobj_dir -I/usr/share/verilator/include verilator_tb.cpp

obj_dir/V<dut >__ALL.a
/usr/share/verilator/include/verilated.cpp
/usr/share/verilator/include/verilated_vcd_c.cpp
-o <bin_name >

./<bin_name >

6 / 25

https://www.veripool.org/verilator/

Verilator

https://www.veripool.org/verilator/

Fast but (slightly more) complex

Testbench in C++

Create clock and reset control signals

Use all the C++ features you want
verilated_vcd_c.h for VCD dump support

verilator --trace --cc <dut >.v
cd obj_dir;make -f V<dut >.mk; cd ..
clang ++ -Iobj_dir -I/usr/share/verilator/include verilator_tb.cpp

obj_dir/V<dut >__ALL.a
/usr/share/verilator/include/verilated.cpp
/usr/share/verilator/include/verilated_vcd_c.cpp
-o <bin_name >

./<bin_name >

6 / 25

https://www.veripool.org/verilator/

Verilator

https://www.veripool.org/verilator/

Fast but (slightly more) complex

Testbench in C++

Create clock and reset control signals
Use all the C++ features you want

verilated_vcd_c.h for VCD dump support

verilator --trace --cc <dut >.v
cd obj_dir;make -f V<dut >.mk; cd ..
clang ++ -Iobj_dir -I/usr/share/verilator/include verilator_tb.cpp

obj_dir/V<dut >__ALL.a
/usr/share/verilator/include/verilated.cpp
/usr/share/verilator/include/verilated_vcd_c.cpp
-o <bin_name >

./<bin_name >

6 / 25

https://www.veripool.org/verilator/

Verilator

https://www.veripool.org/verilator/

Fast but (slightly more) complex

Testbench in C++

Create clock and reset control signals
Use all the C++ features you want
verilated_vcd_c.h for VCD dump support

verilator --trace --cc <dut >.v
cd obj_dir;make -f V<dut >.mk; cd ..
clang ++ -Iobj_dir -I/usr/share/verilator/include verilator_tb.cpp

obj_dir/V<dut >__ALL.a
/usr/share/verilator/include/verilated.cpp
/usr/share/verilator/include/verilated_vcd_c.cpp
-o <bin_name >

./<bin_name >

6 / 25

https://www.veripool.org/verilator/

Verilator

https://www.veripool.org/verilator/

Fast but (slightly more) complex

Testbench in C++

Create clock and reset control signals
Use all the C++ features you want
verilated_vcd_c.h for VCD dump support

verilator --trace --cc <dut >.v
cd obj_dir;make -f V<dut >.mk; cd ..
clang ++ -Iobj_dir -I/usr/share/verilator/include verilator_tb.cpp

obj_dir/V<dut >__ALL.a
/usr/share/verilator/include/verilated.cpp
/usr/share/verilator/include/verilated_vcd_c.cpp
-o <bin_name >

./<bin_name >

6 / 25

https://www.veripool.org/verilator/

Verilator

https://www.veripool.org/verilator/

Fast but (slightly more) complex

Testbench in C++

Create clock and reset control signals
Use all the C++ features you want
verilated_vcd_c.h for VCD dump support

verilator --trace --cc <dut >.v
cd obj_dir;make -f V<dut >.mk; cd ..
clang ++ -Iobj_dir -I/usr/share/verilator/include verilator_tb.cpp

obj_dir/V<dut >__ALL.a
/usr/share/verilator/include/verilated.cpp
/usr/share/verilator/include/verilated_vcd_c.cpp
-o <bin_name >

./<bin_name > 6 / 25

https://www.veripool.org/verilator/

GHDL

Simulate VHDL designs

Testbench in VHDL

No support for VCD

7 / 25

GTKWave

https://github.com/gtkwave/gtkwave

Viewer for VCD traces

VCD = Value Change Dump

1 signal = 1 variable

Whenever the variable changes, it is
noted down in the file.

File - Open New Tab - Select vcd file

Hint: Use Save Files to restore previous
view configuration

8 / 25

https://github.com/gtkwave/gtkwave

GTKWave

https://github.com/gtkwave/gtkwave

Viewer for VCD traces

VCD = Value Change Dump

1 signal = 1 variable

Whenever the variable changes, it is
noted down in the file.

File - Open New Tab - Select vcd file

Hint: Use Save Files to restore previous
view configuration

8 / 25

https://github.com/gtkwave/gtkwave

GTKWave

https://github.com/gtkwave/gtkwave

Viewer for VCD traces

VCD = Value Change Dump

1 signal = 1 variable

Whenever the variable changes, it is
noted down in the file.

File - Open New Tab - Select vcd file

Hint: Use Save Files to restore previous
view configuration

8 / 25

https://github.com/gtkwave/gtkwave

GTKWave

https://github.com/gtkwave/gtkwave

Viewer for VCD traces

VCD = Value Change Dump

1 signal = 1 variable

Whenever the variable changes, it is
noted down in the file.

File - Open New Tab - Select vcd file

Hint: Use Save Files to restore previous
view configuration

8 / 25

https://github.com/gtkwave/gtkwave

GTKWave

https://github.com/gtkwave/gtkwave

Viewer for VCD traces

VCD = Value Change Dump

1 signal = 1 variable

Whenever the variable changes, it is
noted down in the file.

File - Open New Tab - Select vcd file

Hint: Use Save Files to restore previous
view configuration

...
$timescale 1ps $end
...
$var wire 8 # data $end
$var wire 1 ’ tx_en $end
...
$dumpvars
bxxxxxxxx #
x’
$end
#0
b10000001 #
1’
#2211
0’
#2296
b0 #
#2302
...

8 / 25

https://github.com/gtkwave/gtkwave

GTKWave

https://github.com/gtkwave/gtkwave

Viewer for VCD traces

VCD = Value Change Dump

1 signal = 1 variable

Whenever the variable changes, it is
noted down in the file.

File - Open New Tab - Select vcd file

Hint: Use Save Files to restore previous
view configuration

...
$timescale 1ps $end
...
$var wire 8 # data $end
$var wire 1 ’ tx_en $end
...
$dumpvars
bxxxxxxxx #
x’
$end
#0
b10000001 #
1’
#2211
0’
#2296
b0 #
#2302
...

8 / 25

https://github.com/gtkwave/gtkwave

GTKWave

https://github.com/gtkwave/gtkwave

Viewer for VCD traces

VCD = Value Change Dump

1 signal = 1 variable

Whenever the variable changes, it is
noted down in the file.

File - Open New Tab - Select vcd file

Hint: Use Save Files to restore previous
view configuration

...
$timescale 1ps $end
...
$var wire 8 # data $end
$var wire 1 ’ tx_en $end
...
$dumpvars
bxxxxxxxx #
x’
$end
#0
b10000001 #
1’
#2211
0’
#2296
b0 #
#2302
...

8 / 25

https://github.com/gtkwave/gtkwave

Can’t decide?

9 / 25

Can’t decide?

9 / 25

Using the AXI VIP

Prerequisites

When should I use this method?

I want to test my IP core

Including AXI connectivity
Interaction with other IP cores on the board
In Vivado

I want to test whether my IP core reacts correctly wrt the AXI protocol

10 / 25

Prerequisites

When should I use this method?

I want to test my IP core

Including AXI connectivity
Interaction with other IP cores on the board
In Vivado

I want to test whether my IP core reacts correctly wrt the AXI protocol

10 / 25

Prerequisites

When should I use this method?

I want to test my IP core
Including AXI connectivity

Interaction with other IP cores on the board
In Vivado

I want to test whether my IP core reacts correctly wrt the AXI protocol

10 / 25

Prerequisites

When should I use this method?

I want to test my IP core
Including AXI connectivity
Interaction with other IP cores on the board

In Vivado

I want to test whether my IP core reacts correctly wrt the AXI protocol

10 / 25

Prerequisites

When should I use this method?

I want to test my IP core
Including AXI connectivity
Interaction with other IP cores on the board
In Vivado

I want to test whether my IP core reacts correctly wrt the AXI protocol

10 / 25

Prerequisites

When should I use this method?

I want to test my IP core
Including AXI connectivity
Interaction with other IP cores on the board
In Vivado

I want to test whether my IP core reacts correctly wrt the AXI protocol

10 / 25

AXI crashcourse

AXI = Advanced eXtensible Interface

Very popular bus protocol following a master/minion1 structure

Masters andminions want to communicate with each other via a shared
channel.

Master reads data from and writes data to minion.

Minion does nothing without command frommaster.

Based on bursts

1= slave
11 / 25

AXI crashcourse

AXI channels:

Address channels (AW, AR): address and control information
Data channels (R, W): actual information
Write response channel: master can verify a write transaction has been
completed
Each channel has specific signals associated with it.

AXI channel handshake:

Synchronize and control transfer
VALID: used by sender to indicate that information is available
READY: used by the receiver to indicate that it is ready to accept
information

12 / 25

AXI crashcourse

AXI channels:

Address channels (AW, AR): address and control information

Data channels (R, W): actual information
Write response channel: master can verify a write transaction has been
completed
Each channel has specific signals associated with it.

AXI channel handshake:

Synchronize and control transfer
VALID: used by sender to indicate that information is available
READY: used by the receiver to indicate that it is ready to accept
information

12 / 25

AXI crashcourse

AXI channels:

Address channels (AW, AR): address and control information
Data channels (R, W): actual information

Write response channel: master can verify a write transaction has been
completed
Each channel has specific signals associated with it.

AXI channel handshake:

Synchronize and control transfer
VALID: used by sender to indicate that information is available
READY: used by the receiver to indicate that it is ready to accept
information

12 / 25

AXI crashcourse

AXI channels:

Address channels (AW, AR): address and control information
Data channels (R, W): actual information
Write response channel: master can verify a write transaction has been
completed

Each channel has specific signals associated with it.

AXI channel handshake:

Synchronize and control transfer
VALID: used by sender to indicate that information is available
READY: used by the receiver to indicate that it is ready to accept
information

12 / 25

AXI crashcourse

AXI channels:

Address channels (AW, AR): address and control information
Data channels (R, W): actual information
Write response channel: master can verify a write transaction has been
completed
Each channel has specific signals associated with it.

AXI channel handshake:

Synchronize and control transfer
VALID: used by sender to indicate that information is available
READY: used by the receiver to indicate that it is ready to accept
information

12 / 25

AXI crashcourse

AXI channels:

Address channels (AW, AR): address and control information
Data channels (R, W): actual information
Write response channel: master can verify a write transaction has been
completed
Each channel has specific signals associated with it.

AXI channel handshake:

Synchronize and control transfer
VALID: used by sender to indicate that information is available
READY: used by the receiver to indicate that it is ready to accept
information

12 / 25

AXI crashcourse

AXI channels:

Address channels (AW, AR): address and control information
Data channels (R, W): actual information
Write response channel: master can verify a write transaction has been
completed
Each channel has specific signals associated with it.

AXI channel handshake:

Synchronize and control transfer

VALID: used by sender to indicate that information is available
READY: used by the receiver to indicate that it is ready to accept
information

12 / 25

AXI crashcourse

AXI channels:

Address channels (AW, AR): address and control information
Data channels (R, W): actual information
Write response channel: master can verify a write transaction has been
completed
Each channel has specific signals associated with it.

AXI channel handshake:

Synchronize and control transfer
VALID: used by sender to indicate that information is available

READY: used by the receiver to indicate that it is ready to accept
information

12 / 25

AXI crashcourse

AXI channels:

Address channels (AW, AR): address and control information
Data channels (R, W): actual information
Write response channel: master can verify a write transaction has been
completed
Each channel has specific signals associated with it.

AXI channel handshake:

Synchronize and control transfer
VALID: used by sender to indicate that information is available
READY: used by the receiver to indicate that it is ready to accept
information

12 / 25

AXI VIP

AXI VIP = AXI Verification IP

Simulate your IP core as an AXI master or minion

Simulation-only (cannot be synthesized)

Modes:

AXI master VIP: creates read/write transactions for AXI minion DUT

AXI minion VIP: reads payload, writes responses, ... for AXI master DUT

AXI pass-through VIP: passive monitor

13 / 25

AXI VIP

AXI VIP = AXI Verification IP

Simulate your IP core as an AXI master or minion

Simulation-only (cannot be synthesized)

Modes:

AXI master VIP: creates read/write transactions for AXI minion DUT

AXI minion VIP: reads payload, writes responses, ... for AXI master DUT

AXI pass-through VIP: passive monitor

13 / 25

AXI VIP

AXI VIP = AXI Verification IP

Simulate your IP core as an AXI master or minion

Simulation-only (cannot be synthesized)

Modes:

AXI master VIP: creates read/write transactions for AXI minion DUT

AXI minion VIP: reads payload, writes responses, ... for AXI master DUT

AXI pass-through VIP: passive monitor

13 / 25

AXI VIP

AXI VIP = AXI Verification IP

Simulate your IP core as an AXI master or minion

Simulation-only (cannot be synthesized)

Modes:

AXI master VIP: creates read/write transactions for AXI minion DUT

AXI minion VIP: reads payload, writes responses, ... for AXI master DUT

AXI pass-through VIP: passive monitor

13 / 25

AXI VIP

AXI VIP = AXI Verification IP

Simulate your IP core as an AXI master or minion

Simulation-only (cannot be synthesized)

Modes:

AXI master VIP: creates read/write transactions for AXI minion DUT

AXI minion VIP: reads payload, writes responses, ... for AXI master DUT

AXI pass-through VIP: passive monitor

13 / 25

AXI VIP

AXI VIP = AXI Verification IP

Simulate your IP core as an AXI master or minion

Simulation-only (cannot be synthesized)

Modes:

AXI master VIP: creates read/write transactions for AXI minion DUT

AXI minion VIP: reads payload, writes responses, ... for AXI master DUT

AXI pass-through VIP: passive monitor

13 / 25

AXI VIP

AXI VIP = AXI Verification IP

Simulate your IP core as an AXI master or minion

Simulation-only (cannot be synthesized)

Modes:

AXI master VIP: creates read/write transactions for AXI minion DUT

AXI minion VIP: reads payload, writes responses, ... for AXI master DUT

AXI pass-through VIP: passive monitor

13 / 25

Preparing the test setup

1. Create a new block design and add:

a. The IP core you want to test (AXI minion)
b. AXI verification IP
c. Simulation clock generator

2. Connect the simulation clock to the DUT-IP and VIP

3. Configure VIP: Customize block...

Interface mode: Master, minion, pass-through

4. Run connection automation...

5. Validate design

6. Create HDL wrapper

Hint: make sure to exclude all other (BD-)sources!
14 / 25

Writing the testbench

1. Add a new simulation source (tb.sv)

2. Import: import axi_vip_pkg::*; and import <axi_vip_name>_pkg::*; Hint: use
get_ips *vip* to find out name

3. Instantiate the HDL wrapper

4. Add a new AXI master agent: <axi_vip_name>_mst_t master_agent;

Master agent can be used to generate AXI transactions
master_agent.AXI4LITE_WRITE_BURST(...)

master_agent.AXI4LITE_READ_BURST(...)

We provide a template testbench:
https://extgit.iaik.tugraz.at/sip/tutorials/-/tree/master/axi_tb

15 / 25

https://extgit.iaik.tugraz.at/sip/tutorials/-/tree/master/axi_tb

Starting the simulation

SIMULATION - Run Simulation - Run Behavorial Simulation

Objects : Instantiated modules

Protocol Instances : can be used to view AXI protocol behavior

Drag into simulation window

16 / 25

Can’t decide?

17 / 25

Can’t decide?

17 / 25

Debugging SW in Vitis

Prerequisites

When should I use this method?

I want to find functional bugs in my so�ware design

I want to debug the so�ware I wrote by running it on real hardware

In Vitis

Executable must be built in Debugmode
(Assistant - Select Build Configuration)

18 / 25

Prerequisites

When should I use this method?

I want to find functional bugs in my so�ware design

I want to debug the so�ware I wrote by running it on real hardware

In Vitis

Executable must be built in Debugmode
(Assistant - Select Build Configuration)

18 / 25

Prerequisites

When should I use this method?

I want to find functional bugs in my so�ware design

I want to debug the so�ware I wrote by running it on real hardware

In Vitis

Executable must be built in Debugmode
(Assistant - Select Build Configuration)

18 / 25

Prerequisites

When should I use this method?

I want to find functional bugs in my so�ware design

I want to debug the so�ware I wrote by running it on real hardware

In Vitis

Executable must be built in Debugmode
(Assistant - Select Build Configuration)

18 / 25

Prerequisites

When should I use this method?

I want to find functional bugs in my so�ware design

I want to debug the so�ware I wrote by running it on real hardware

In Vitis

Executable must be built in Debugmode
(Assistant - Select Build Configuration)

18 / 25

XSDB

XSDB = Xilinx System Debugger

Uses hw_server as debug engine to communicate with CPU on Zybo Board

Launch configuration: debug settings

Open Debug Configurations

Main : build configuration, program arguments, ...

Remote debugging

Remote machine: runs hw_server from XSCT console

Local machine: specify hostname/IP address and port

19 / 25

XSDB

XSDB = Xilinx System Debugger

Uses hw_server as debug engine to communicate with CPU on Zybo Board

Launch configuration: debug settings

Open Debug Configurations

Main : build configuration, program arguments, ...

Remote debugging

Remote machine: runs hw_server from XSCT console

Local machine: specify hostname/IP address and port

19 / 25

XSDB

XSDB = Xilinx System Debugger

Uses hw_server as debug engine to communicate with CPU on Zybo Board

Launch configuration: debug settings

Open Debug Configurations

Main : build configuration, program arguments, ...

Remote debugging

Remote machine: runs hw_server from XSCT console

Local machine: specify hostname/IP address and port

19 / 25

XSDB

XSDB = Xilinx System Debugger

Uses hw_server as debug engine to communicate with CPU on Zybo Board

Launch configuration: debug settings

Open Debug Configurations

Main : build configuration, program arguments, ...

Remote debugging

Remote machine: runs hw_server from XSCT console

Local machine: specify hostname/IP address and port

19 / 25

XSDB

XSDB = Xilinx System Debugger

Uses hw_server as debug engine to communicate with CPU on Zybo Board

Launch configuration: debug settings

Open Debug Configurations

Main : build configuration, program arguments, ...

Remote debugging

Remote machine: runs hw_server from XSCT console

Local machine: specify hostname/IP address and port

19 / 25

XSDB

XSDB = Xilinx System Debugger

Uses hw_server as debug engine to communicate with CPU on Zybo Board

Launch configuration: debug settings

Open Debug Configurations

Main : build configuration, program arguments, ...

Remote debugging

Remote machine: runs hw_server from XSCT console

Local machine: specify hostname/IP address and port

19 / 25

XSDB

XSDB = Xilinx System Debugger

Uses hw_server as debug engine to communicate with CPU on Zybo Board

Launch configuration: debug settings

Open Debug Configurations

Main : build configuration, program arguments, ...

Remote debugging

Remote machine: runs hw_server from XSCT console

Local machine: specify hostname/IP address and port

19 / 25

XSDB

XSDB = Xilinx System Debugger

Uses hw_server as debug engine to communicate with CPU on Zybo Board

Launch configuration: debug settings

Open Debug Configurations

Main : build configuration, program arguments, ...

Remote debugging

Remote machine: runs hw_server from XSCT console

Local machine: specify hostname/IP address and port

19 / 25

Debugging bare-metal application in Vitis

1. Build your project

2. Connect your board via USB

3. Bare-metal applications: Debug As - 1 Launch Hardware

4. Connect Vitis Serial Terminal

20 / 25

Can’t decide?

21 / 25

Can’t decide?

21 / 25

Using ILA Cores

JTAG

Industry standard for debugging designs a�er manufacture

Motivation: testing a board with many IO pins is di�icult

Boundary Scan Testing

For each IO pin: insert a small logic cell between internal logic and
physical pin

Connect all these logic cells to the TAP (test access port)

TAP can read andmanipulate IO pin through logic cell

22 / 25

JTAG

Industry standard for debugging designs a�er manufacture

Motivation: testing a board with many IO pins is di�icult

Boundary Scan Testing

For each IO pin: insert a small logic cell between internal logic and
physical pin

Connect all these logic cells to the TAP (test access port)

TAP can read andmanipulate IO pin through logic cell

22 / 25

JTAG

Industry standard for debugging designs a�er manufacture

Motivation: testing a board with many IO pins is di�icult

Boundary Scan Testing

For each IO pin: insert a small logic cell between internal logic and
physical pin

Connect all these logic cells to the TAP (test access port)

TAP can read andmanipulate IO pin through logic cell

22 / 25

JTAG

Industry standard for debugging designs a�er manufacture

Motivation: testing a board with many IO pins is di�icult

Boundary Scan Testing

For each IO pin: insert a small logic cell between internal logic and
physical pin

Connect all these logic cells to the TAP (test access port)

TAP can read andmanipulate IO pin through logic cell

22 / 25

JTAG

Industry standard for debugging designs a�er manufacture

Motivation: testing a board with many IO pins is di�icult

Boundary Scan Testing

For each IO pin: insert a small logic cell between internal logic and
physical pin

Connect all these logic cells to the TAP (test access port)

TAP can read andmanipulate IO pin through logic cell

22 / 25

JTAG

Industry standard for debugging designs a�er manufacture

Motivation: testing a board with many IO pins is di�icult

Boundary Scan Testing

For each IO pin: insert a small logic cell between internal logic and
physical pin

Connect all these logic cells to the TAP (test access port)

TAP can read andmanipulate IO pin through logic cell

22 / 25

JTAG

23 / 25

ILA

ILA = Integrated Logic Analyzer

IP core to monitor internal signals of a design

Only for synthesized designs (opposite of AXI VIP)

ILA probes: connected to internal wires, deliver wire value

1 probe = 1 wire
Every probe is connected to trigger comparator.
If trigger condition evaluates to true: ILA delivers trace measurement

When should I use this method?

I have already verified in simulations that my hardware and so�ware
are bug free, but something still does not work out.
I think that synthesis/implementation introduces a bug

24 / 25

ILA

ILA = Integrated Logic Analyzer

IP core to monitor internal signals of a design

Only for synthesized designs (opposite of AXI VIP)

ILA probes: connected to internal wires, deliver wire value

1 probe = 1 wire
Every probe is connected to trigger comparator.
If trigger condition evaluates to true: ILA delivers trace measurement

When should I use this method?

I have already verified in simulations that my hardware and so�ware
are bug free, but something still does not work out.
I think that synthesis/implementation introduces a bug

24 / 25

ILA

ILA = Integrated Logic Analyzer

IP core to monitor internal signals of a design

Only for synthesized designs (opposite of AXI VIP)

ILA probes: connected to internal wires, deliver wire value

1 probe = 1 wire
Every probe is connected to trigger comparator.
If trigger condition evaluates to true: ILA delivers trace measurement

When should I use this method?

I have already verified in simulations that my hardware and so�ware
are bug free, but something still does not work out.
I think that synthesis/implementation introduces a bug

24 / 25

ILA

ILA = Integrated Logic Analyzer

IP core to monitor internal signals of a design

Only for synthesized designs (opposite of AXI VIP)

ILA probes: connected to internal wires, deliver wire value

1 probe = 1 wire
Every probe is connected to trigger comparator.
If trigger condition evaluates to true: ILA delivers trace measurement

When should I use this method?

I have already verified in simulations that my hardware and so�ware
are bug free, but something still does not work out.
I think that synthesis/implementation introduces a bug

24 / 25

ILA

ILA = Integrated Logic Analyzer

IP core to monitor internal signals of a design

Only for synthesized designs (opposite of AXI VIP)

ILA probes: connected to internal wires, deliver wire value

1 probe = 1 wire

Every probe is connected to trigger comparator.
If trigger condition evaluates to true: ILA delivers trace measurement

When should I use this method?

I have already verified in simulations that my hardware and so�ware
are bug free, but something still does not work out.
I think that synthesis/implementation introduces a bug

24 / 25

ILA

ILA = Integrated Logic Analyzer

IP core to monitor internal signals of a design

Only for synthesized designs (opposite of AXI VIP)

ILA probes: connected to internal wires, deliver wire value

1 probe = 1 wire
Every probe is connected to trigger comparator.

If trigger condition evaluates to true: ILA delivers trace measurement

When should I use this method?

I have already verified in simulations that my hardware and so�ware
are bug free, but something still does not work out.
I think that synthesis/implementation introduces a bug

24 / 25

ILA

ILA = Integrated Logic Analyzer

IP core to monitor internal signals of a design

Only for synthesized designs (opposite of AXI VIP)

ILA probes: connected to internal wires, deliver wire value

1 probe = 1 wire
Every probe is connected to trigger comparator.
If trigger condition evaluates to true: ILA delivers trace measurement

When should I use this method?

I have already verified in simulations that my hardware and so�ware
are bug free, but something still does not work out.
I think that synthesis/implementation introduces a bug

24 / 25

ILA

ILA = Integrated Logic Analyzer

IP core to monitor internal signals of a design

Only for synthesized designs (opposite of AXI VIP)

ILA probes: connected to internal wires, deliver wire value

1 probe = 1 wire
Every probe is connected to trigger comparator.
If trigger condition evaluates to true: ILA delivers trace measurement

When should I use this method?

I have already verified in simulations that my hardware and so�ware
are bug free, but something still does not work out.
I think that synthesis/implementation introduces a bug

24 / 25

ILA

ILA = Integrated Logic Analyzer

IP core to monitor internal signals of a design

Only for synthesized designs (opposite of AXI VIP)

ILA probes: connected to internal wires, deliver wire value

1 probe = 1 wire
Every probe is connected to trigger comparator.
If trigger condition evaluates to true: ILA delivers trace measurement

When should I use this method?

I have already verified in simulations that my hardware and so�ware
are bug free, but something still does not work out.

I think that synthesis/implementation introduces a bug

24 / 25

ILA

ILA = Integrated Logic Analyzer

IP core to monitor internal signals of a design

Only for synthesized designs (opposite of AXI VIP)

ILA probes: connected to internal wires, deliver wire value

1 probe = 1 wire
Every probe is connected to trigger comparator.
If trigger condition evaluates to true: ILA delivers trace measurement

When should I use this method?

I have already verified in simulations that my hardware and so�ware
are bug free, but something still does not work out.
I think that synthesis/implementation introduces a bug

24 / 25

ILA workflow

1. In Vivado, add a new IP core to block design: System ILA

2. Set Monitor Type = Native and choose the number of probes

3. For each probe, configure the probe width and trigger.

4. Finish adding the IP and connect the ILA to the system clock.

5. For any wire to debug: select Debug

6. Generate bitstream and open the HWmanager. Program the device (with
Bitstream file and Debug probes file)

7. Run the SW in Vitis

8. In Vivado, open the HWmanager and refresh target.
25 / 25

	Simulation of hardware designs
	
	Using the AXI VIP
	
	Debugging SW in Vitis
	
	Using ILA Cores
	

