
Computer Organization and Networks
(INB.06000UF, INB.07001UF)

Winter 2022/2023

Stefan Mangard, www.iaik.tugraz.at

Chapter 6: Peripherals and Interrupts



www.iaik.tugraz.at

2

Control Unit

Bus
System

Output
(Monitor, Printer, 
Network, Disc, …)

Input
(Keyboard, Disc, 

Network, …)

CPU
Memory

Program 
Counter

Instruction 
Register

Processing Unit

Data 
RegistersALU

How to Implement I/O?



How to 
Implement I/O?

www.iaik.tugraz.at

3

• We access I/O and other 
devices like memory 

→ we build memory-
mapped peripherals



Memory-Mapped Peripherals

• Store and load instructions allow addressing 32-bit of memory space

• Not all the memory space that is addressable is used for actual 
memory

• We can split the memory space in pieces and assign a certain range to 
actual memory and other ranges to peripherals:

→ load/store operations write to registers of state machines with additional 
functionality (I/O, Co-processors, sound, graphics, … ) 

www.iaik.tugraz.at

4



www.iaik.tugraz.at

5

Control Unit

Bus
System

Output
(Monitor, Printer, 
Network, Disc, …)

Input
(Keyboard, Disc, 

Network, …)

CPU
Memory

Program 
Counter

Instruction 
Register

Processing Unit

Data 
RegistersALU

The bus system takes care of routing the load/store operations to the 
correct physical device as defined by the memory ranges



The Hardware View

www.iaik.tugraz.at

6

Processor 

Flash 
Memory 

RAM Peripheral 1 Peripheral 2 Address 
Decoder

WriteData

ReadData

Address

Enable2Enable1 Enable3 Enable4

MemWrite



Memory Mapping – Different for different 
Systems

• The memory map is not part of the instruction set architecture and it 
is also not defined by RISC V 

• There are commonalities, but in the end the memory map is 
individual for every device 

www.iaik.tugraz.at

7



Example Memory Map

www.iaik.tugraz.at

8



Micro RISC-V

• Micro RISC-V is a very simple CPU that we use for our introductory 
programming examples

• Micro RISC-V implements a subset of R32I 

• Tools and code for micro RISC-V 
• Code for Micro RISC-V and examples are available in the examples-2021 repo

• Assembler: riscvasm.py 

• Simulator: riscvsim.py

www.iaik.tugraz.at

9



Micro RISC-V Overview

www.iaik.tugraz.at

10



Memory Map in Micro RISC-V

• In Micro RISC-V, the physical memory 
map is as follows:
• RAM is located from 0x00000000 to 

0x000007FB

• I/O is located at address 0x000007FC

• The remaining memory range is not 
connected (write has no effect; read 
returns 0)

• The physical memory map is defined for 
each device depending on size of 
memory, peripherals, etc. 

www.iaik.tugraz.at

11



Programming in Assembly

www.iaik.tugraz.at

12



Note on ASM Examples

• Run “make” to generate .hex files

• Run “make run” to assemble and run the .asm file in the current working 
directory with the RTL simulator (micro-RISCV) 

• Run “make sim” to simulate the .asm file in the current working directory 
with the python asmlib RISC-V simulator

If there are more than one asm files in the current working directory, you 
need to specify the target explicitly using “make 
run=the_asm_file_without_file_extension_suffix” (and accordingly for 
“make sim”).

www.iaik.tugraz.at

13



Read/Write from Memory vs. Read Write 
from I/O

www.iaik.tugraz.at

14

adding-two-constants adding-stdin-numbers



Summing Up 10 Input Values

www.iaik.tugraz.at

15



Loops

www.iaik.tugraz.at

16



Loops

www.iaik.tugraz.at

17



Loops

www.iaik.tugraz.at

18



Loops

www.iaik.tugraz.at

19



Loops

www.iaik.tugraz.at

20

Counting offsets is not a 
nice job for a programmer

→ Let the compiler do it



Symbols

• Basic idea:
• We label memory addresses 

• Each address we label is assigned a symbol (“a name”) 

• When programming, we can replace memory addresses by symbols 
to simplify the complexity of programming

www.iaik.tugraz.at

21



Loop Using a Label

www.iaik.tugraz.at

22



Variables, Having Fun With the Memory Layout

www.iaik.tugraz.at

23

• We can choose the 
memory layout as we like

• We can mix data and 
code

• Try it out with your own 
code



Pseudo-Instructions

nop addi x0, x0, 0 No operation

li rd, immediate
lui rd, imm[31:12]
addi rd, rd, 
imm[11:0]

Load immediate

mv rd, rs addi rd, rs, 0 Copy register

bgez rs, offset bge rs, x0, offset Branch if ≥ zero

bltz rs, offset blt rs, x0, offset Branch if < zero

bgtz rs, offset blt x0, rs, offset Branch if > zero

bgt rs, rt, offset blt rt, rs, offset Branch if >

ble rs, rt, offset bge rt, rs, offset Branch if ≤

bgtu rs, rt, offset bltu rt, rs, offset Branch if >, unsigned

bleu rs, rt, offset bgeu rt, rs, offset Branch if ≤, unsigned

j offset jal x0, offset Jump

www.iaik.tugraz.at

24

To ease programming, there are pseudo-
instructions for 

• common instruction sequences and

• instructions that can be derived from 
another instruction

Examples



Communication Interfaces

www.iaik.tugraz.at

25



Examples in QtRVSim

• https://comparch.edu.cvut.cz/qtrvsim/app/

• Examples
• 03_simple_write.S

• 04_playing_with_knobs.S

www.iaik.tugraz.at

26

https://comparch.edu.cvut.cz/qtrvsim/app/


Von Neumann Model

27

Processing Unit

Control Unit

Bus
System

Output
(Monitor, Printer, 
Network, Disc, …)

Input
(Keyboard, Disc, 

Network, …)

CPU
Memory

Register
File

Program 
Counter

Instruction 
Register

ALU



Our Example I/O

www.iaik.tugraz.at

28

• The I/O interface that we discussed so 
far is idealized debug interface (data is 
always valid)

• In practice there is the following 
challenge: 

• The CPU executes one instruction after the 
other.

• How should it know when the input is 
valid? Is it valid always (in every clock 
cycle)? 



Example

• Assume an input port of a computer is set to a value 1 in one clock 
cycle

• It is still 1 in the next clock cycle

• Does this mean this is the “same” 1 or does this mean that there is a 
“second” 1? 

• How should the computer know?

www.iaik.tugraz.at

29



We Need to Add a Flag 

www.iaik.tugraz.at

30
	

	

You've Got MailNo Mail for You



Synchronization with Control Signals

• On real communication channels, data is not always ready

• We need synchronization with control signals

• There exist different protocols and standards.
• Serial protocols: RS232, SPI, USB, SATA, . . .
• Parallel protocols: PATA/IDE, IEEE 1284 (Printer), . . .

• We use a simple interface with few control signals to illustrate this
• 8-bit data port
• Simple valid/ready flow-control
• Registers (memory mapped)

• 0x7D0 (control register)
• 0x7D4 (data register)

www.iaik.tugraz.at

31



Implementing an Interface With a Control 
Register

www.iaik.tugraz.at

32

Receiver 

(The Sofware)
The Sender



Implementing an Interface With a Control 
Register

www.iaik.tugraz.at

33

Receiver 

(The Sofware)
The Sender

(1) Sender waits until valid bit is cleared (set to 0)

(2) Sender sets the data value

(3) Sender sets the valid bit

Note:
Sender and Receiver 

can operate at 
different speeds

Example of a basic protocol:

(4) Receiver (the software) waits until valid bit is set

(5) Receiver reads the data

(6) Receiver clears the valid bit



Polling Using a Control Register by the sender

www.iaik.tugraz.at

34

Pseudoinstruction for 

beq t1,zero, POLL_PARIN



Control Signals

• There is a wide range of options for implementing communication 
between entities (FSMs, software, humans, …) of with different 
speeds

• However, in all cases, there needs to be signals to ensure that
• The sender knows that the resource (bus, register, …) is available

• The receiver knows that there is valid input

• The sender knows that the receiver has received the signal (acknowledge) 

www.iaik.tugraz.at

35



Polling Example in QtRVSim

• https://comparch.edu.cvut.cz/qtrvsim/app/

• Example
• 05_polling.S

www.iaik.tugraz.at

36

https://comparch.edu.cvut.cz/qtrvsim/app/


Communication via a Slow Communication 
Interface

• Polling is highly inefficient: the CPU is stuck in a loop until e.g. 
• an I/O peripheral sets a ready signal
• a timer has reached a certain value
• the user has pressed a key
• ….

• Alternative
• CPU keeps executing some useful code in the first place
• We use concept of interrupts to react to “unexpected” events
• Basic idea: Instead of waiting for an event, we execute useful code and then let an 

event trigger a redirection of the instruction stream 

www.iaik.tugraz.at

37



How to handle unexpected external events?

• We add an input signal to the CPU called “interrupt”.

• An external source can activate this input signal “interrupt”.

• After executing an instruction, the CPU checks for the value of this 
input signal “interrupt” before it fetches the next instruction.

• If the signal “interrupt” is active, the next instruction to be executed 
is the first instruction of the “interrupt-service routine”.

• After “handling” the interrupt by executing the interrupt-service 
routine, the CPU returns to the interrupted program. 

38



Interrupts in RISC-V

• Hardware Aspects
• External interrupt is an input signal to the processor core
• Control & Status registers (CSRs) for interrupt configuration (e.g. mie, mtvec, mip, …)
• Additional instructions for interrupt handling (mret)
• Dedicated interrupt controllers on bigger processors

• Software Aspects
• When an interrupt occurs, the program execution is interrupted
• Functions have to be provided to handle interrupts → Interrupt Service Routines 

(ISR)
• Software needs to configure and enable interrupts
• Software has to preserve the interrupted context

→ Interrupt entry points are typically written in assembly

www.iaik.tugraz.at

39



Control & Status Registers (CSRs) in RISC-V

• We so far only considered memory-mapped peripherals whose 
registers can be accessed via standard load and store instructions 

• RISC-V also features dedicated so called “Control & Status Registers”
• The ISA allows addressing 4096 registers (32 bit each)

• Dedicated instructions allow to read and write these registers: CSRRW, CSRRS, 
CSRRC, CSRRWI, CSRRSI, CSRRCI

www.iaik.tugraz.at

40



The Interrupt Service Routine (ISR)

• Entering the ISR
• Upon an interrupt, the processor 

• jumps to a location in memory specified by the mtvec CSR.
• automatically stores the previous location into mepc CSR.

• Executing the ISR
• The ISR can execute arbitrary code; However, the processor context (program 

counter, register) needs to have exactly the same values when returning to the 
interrupted code → “From the view of the interrupted program, the execution after 
the interrupt continues as if nothing had happened” 

• Leaving the ISR
• Upon the execution of the mret instruction, the processor

• returns to the original location stored in the mepc CSR

www.iaik.tugraz.at

41



Finding the Interrupt Service Routine

• Two approaches are common:
• Single entrypoint for all interrupts.

• the ISR has to determine what caused the interrupt and then handles the corresponding interrupt

• Multiple entrypoints for different interrupts organized in a table (vectored interrupts)
• A table defines the entry point for different causes of interrupts
• E.g. each interrupt vector table entry has 4 bytes

• Interrupt cause 0 leads to a jump to mtvec
• Interrupt cause 1 leads to a jump to mtvec+4 
• Interrupt cause 2 leads to a jump to mtvec+8
• …

→just enough space to place a single jal instruction to the actual ISR handler code at 
each entry location

• RISC-V permits both approaches

www.iaik.tugraz.at

42



Connecting Interrupt Sources to Interrupt 
Service Routines

www.iaik.tugraz.at

43

Source 0
(e.g. keyboard)

Source 1
(e.g. timer)

Source 2
…

…
…

There are many options for connecting 
interrupt sources to interrupt service routines

Code handling 
source 0

Code handling 
source 1

Code handling 
source 2

Code handling 
source …



Connecting Interrupt Sources to Interrupt 
Service Routines (one Interrupt)

www.iaik.tugraz.at

44

Source 0
(e.g. keyboard)

Source 1
(e.g. timer)

Source 2
…

…
…

Interrupt 0 Entry point 0

• The ISR at the entry point needs to check the 
status of the interrupt sources in order to find 
out which code shall be executed to handle the 
interrupt

Code handling 
source 0

Code handling 
source 1

Code handling 
source 2

Code handling 
source …



Connecting Interrupt Sources to Interrupt 
Service Routines (one entry point)

www.iaik.tugraz.at

45

Source 0
(e.g. keyboard)

Source 1
(e.g. timer)

Source 2
…

…
…

Interrupt 0 Entry point 0

• The ISR at the entry 
point based on the 
interrupt number 
determines the code 
that shall be 
executed to handle 
the interrupt

Code handling 
source 0

Code handling 
source 1

Code handling 
source 2

Code handling 
source …

Interrupt 1 

Interrupt 2 

Interrupt 3 



Connecting Interrupt Sources to Interrupt 
Service Routines (vectored approach)

www.iaik.tugraz.at

46

Source 0
(e.g. keyboard)

Source 1
(e.g. timer)

Source 2
…

…
…

Interrupt 0 Entry point 0

• Vectored handling with different entry points for different interrupts

Code handling 
source 0

Code handling 
source 1

Code handling 
source 2

Code handling 
source …

Interrupt 1 

Interrupt 2 

Interrupt … 

Entry point 1

Entry point 2

Entry point …



Connecting Interrupt Sources to Interrupt 
Service Routines

• In practice all kinds of combinations are possible for interrupt 
handling

• There is also the option for having interrupts with different priorities

• Dedicated interrupt controllers are available on larger systems to 
handle priorities, entry points, nested interrupts, …

www.iaik.tugraz.at

47


