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• We access I/O and other 
devices like memory 

→ we build memory-
mapped peripherals



Memory-Mapped Peripherals

• Store and load instructions allow addressing 32-bit of memory space

• Not all the memory space that is addressable is used for actual 
memory

• We can split the memory space in pieces and assign a certain range to 
actual memory and other ranges to peripherals:

→ load/store operations write to registers of state machines with additional 
functionality (I/O, Co-processors, sound, graphics, … ) 
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The bus system takes care of routing the load/store operations to the 
correct physical device as defined by the memory ranges



The Hardware View
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Memory Mapping – Different for different 
Systems

• The memory map is not part of the instruction set architecture and it 
is also not defined by RISC V 

• There are commonalities, but in the end the memory map is 
individual for every device 
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Example Memory Map

www.iaik.tugraz.at

8



Micro RISC-V

• Micro RISC-V is a very simple CPU that we use for our introductory 
programming examples

• Micro RISC-V implements a subset of R32I 

• Tools and code for micro RISC-V 
• Code for Micro RISC-V and examples are available in the examples-2021 repo

• Assembler: riscvasm.py 

• Simulator: riscvsim.py
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Micro RISC-V Overview
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Memory Map in Micro RISC-V

• In Micro RISC-V, the physical memory 
map is as follows:
• RAM is located from 0x00000000 to 

0x000007FB

• I/O is located at address 0x000007FC

• The remaining memory range is not 
connected (write has no effect; read 
returns 0)

• The physical memory map is defined for 
each device depending on size of 
memory, peripherals, etc. 
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Programming in Assembly
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Note on ASM Examples

• Run “make” to generate .hex files

• Run “make run” to assemble and run the .asm file in the current working 
directory with the RTL simulator (micro-RISCV) 

• Run “make sim” to simulate the .asm file in the current working directory 
with the python asmlib RISC-V simulator

If there are more than one asm files in the current working directory, you 
need to specify the target explicitly using “make 
run=the_asm_file_without_file_extension_suffix” (and accordingly for 
“make sim”).
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Read/Write from Memory vs. Read Write 
from I/O
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adding-two-constants adding-stdin-numbers



Summing Up 10 Input Values
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Loops
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Loops
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Loops
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Loops
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Loops
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Counting offsets is not a 
nice job for a programmer

→ Let the compiler do it



Symbols

• Basic idea:
• We label memory addresses 

• Each address we label is assigned a symbol (“a name”) 

• When programming, we can replace memory addresses by symbols 
to simplify the complexity of programming
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Loop Using a Label
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Variables, Having Fun With the Memory Layout
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• We can choose the 
memory layout as we like

• We can mix data and 
code

• Try it out with your own 
code



Pseudo-Instructions

nop addi x0, x0, 0 No operation

li rd, immediate
lui rd, imm[31:12]
addi rd, rd, 
imm[11:0]

Load immediate

mv rd, rs addi rd, rs, 0 Copy register

bgez rs, offset bge rs, x0, offset Branch if ≥ zero

bltz rs, offset blt rs, x0, offset Branch if < zero

bgtz rs, offset blt x0, rs, offset Branch if > zero

bgt rs, rt, offset blt rt, rs, offset Branch if >

ble rs, rt, offset bge rt, rs, offset Branch if ≤

bgtu rs, rt, offset bltu rt, rs, offset Branch if >, unsigned

bleu rs, rt, offset bgeu rt, rs, offset Branch if ≤, unsigned

j offset jal x0, offset Jump
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To ease programming, there are pseudo-
instructions for 

• common instruction sequences and

• instructions that can be derived from 
another instruction

Examples



Communication Interfaces
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Examples in QtRVSim

• https://comparch.edu.cvut.cz/qtrvsim/app/

• Examples
• 03_simple_write.S

• 04_playing_with_knobs.S
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Von Neumann Model
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Our Example I/O
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• The I/O interface that we discussed so 
far is idealized debug interface (data is 
always valid)

• In practice there is the following 
challenge: 

• The CPU executes one instruction after the 
other.

• How should it know when the input is 
valid? Is it valid always (in every clock 
cycle)? 



Example

• Assume an input port of a computer is set to a value 1 in one clock 
cycle

• It is still 1 in the next clock cycle

• Does this mean this is the “same” 1 or does this mean that there is a 
“second” 1? 

• How should the computer know?
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We Need to Add a Flag 
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You've Got MailNo Mail for You



Synchronization with Control Signals

• On real communication channels, data is not always ready

• We need synchronization with control signals

• There exist different protocols and standards.
• Serial protocols: RS232, SPI, USB, SATA, . . .
• Parallel protocols: PATA/IDE, IEEE 1284 (Printer), . . .

• We use a simple interface with few control signals to illustrate this
• 8-bit data port
• Simple valid/ready flow-control
• Registers (memory mapped)

• 0x7D0 (control register)
• 0x7D4 (data register)
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Implementing an Interface With a Control 
Register
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Implementing an Interface With a Control 
Register
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Receiver 

(The Sofware)
The Sender

(1) Sender waits until valid bit is cleared (set to 0)

(2) Sender sets the data value

(3) Sender sets the valid bit

Note:
Sender and Receiver 

can operate at 
different speeds

Example of a basic protocol:

(4) Receiver (the software) waits until valid bit is set

(5) Receiver reads the data

(6) Receiver clears the valid bit



Polling Using a Control Register by the sender
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Pseudoinstruction for 

beq t1,zero, POLL_PARIN



Control Signals

• There is a wide range of options for implementing communication 
between entities (FSMs, software, humans, …) of with different 
speeds

• However, in all cases, there needs to be signals to ensure that
• The sender knows that the resource (bus, register, …) is available

• The receiver knows that there is valid input

• The sender knows that the receiver has received the signal (acknowledge) 

www.iaik.tugraz.at

35



Polling Example in QtRVSim

• https://comparch.edu.cvut.cz/qtrvsim/app/

• Example
• 05_polling.S
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Communication via a Slow Communication 
Interface

• Polling is highly inefficient: the CPU is stuck in a loop until e.g. 
• an I/O peripheral sets a ready signal
• a timer has reached a certain value
• the user has pressed a key
• ….

• Alternative
• CPU keeps executing some useful code in the first place
• We use concept of interrupts to react to “unexpected” events
• Basic idea: Instead of waiting for an event, we execute useful code and then let an 

event trigger a redirection of the instruction stream 
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How to handle unexpected external events?

• We add an input signal to the CPU called “interrupt”.

• An external source can activate this input signal “interrupt”.

• After executing an instruction, the CPU checks for the value of this 
input signal “interrupt” before it fetches the next instruction.

• If the signal “interrupt” is active, the next instruction to be executed 
is the first instruction of the “interrupt-service routine”.

• After “handling” the interrupt by executing the interrupt-service 
routine, the CPU returns to the interrupted program. 
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Interrupts in RISC-V

• Hardware Aspects
• External interrupt is an input signal to the processor core
• Control & Status registers (CSRs) for interrupt configuration (e.g. mie, mtvec, mip, …)
• Additional instructions for interrupt handling (mret)
• Dedicated interrupt controllers on bigger processors

• Software Aspects
• When an interrupt occurs, the program execution is interrupted
• Functions have to be provided to handle interrupts → Interrupt Service Routines 

(ISR)
• Software needs to configure and enable interrupts
• Software has to preserve the interrupted context

→ Interrupt entry points are typically written in assembly
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Control & Status Registers (CSRs) in RISC-V

• We so far only considered memory-mapped peripherals whose 
registers can be accessed via standard load and store instructions 

• RISC-V also features dedicated so called “Control & Status Registers”
• The ISA allows addressing 4096 registers (32 bit each)

• Dedicated instructions allow to read and write these registers: CSRRW, CSRRS, 
CSRRC, CSRRWI, CSRRSI, CSRRCI
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The Interrupt Service Routine (ISR)

• Entering the ISR
• Upon an interrupt, the processor 

• jumps to a location in memory specified by the mtvec CSR.
• automatically stores the previous location into mepc CSR.

• Executing the ISR
• The ISR can execute arbitrary code; However, the processor context (program 

counter, register) needs to have exactly the same values when returning to the 
interrupted code → “From the view of the interrupted program, the execution after 
the interrupt continues as if nothing had happened” 

• Leaving the ISR
• Upon the execution of the mret instruction, the processor

• returns to the original location stored in the mepc CSR
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Finding the Interrupt Service Routine

• Two approaches are common:
• Single entrypoint for all interrupts.

• the ISR has to determine what caused the interrupt and then handles the corresponding interrupt

• Multiple entrypoints for different interrupts organized in a table (vectored interrupts)
• A table defines the entry point for different causes of interrupts
• E.g. each interrupt vector table entry has 4 bytes

• Interrupt cause 0 leads to a jump to mtvec
• Interrupt cause 1 leads to a jump to mtvec+4 
• Interrupt cause 2 leads to a jump to mtvec+8
• …

→just enough space to place a single jal instruction to the actual ISR handler code at 
each entry location

• RISC-V permits both approaches
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Connecting Interrupt Sources to Interrupt 
Service Routines
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Connecting Interrupt Sources to Interrupt 
Service Routines (one Interrupt)
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Connecting Interrupt Sources to Interrupt 
Service Routines (one entry point)
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Connecting Interrupt Sources to Interrupt 
Service Routines (vectored approach)
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Connecting Interrupt Sources to Interrupt 
Service Routines

• In practice all kinds of combinations are possible for interrupt 
handling

• There is also the option for having interrupts with different priorities

• Dedicated interrupt controllers are available on larger systems to 
handle priorities, entry points, nested interrupts, …
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