
Cryptography on Hardware Platform
Sujoy Sinha Roy

sujoy.sinharoy@iaik.tugraz.at

Statistical Tests for RNGs

mailto:sujoy.sinharoy@iaik.tugraz.at

Random
Number

Generator

Random
Numbers

How could we verify that the numbers produced are
indeed random?

Random bit sequence

NIST’s definition: A random bit sequence could be interpreted as the result of

• Flips of an unbiased ‘fair’ coin with sides labeled ‘0’ and ‘1’,

• With each flip having a probability of exactly 1/2 of producing a ‘0’ or ‘1’,

• And the flips are independent of each other.

Independent, identically distributed (IID) and unbiased.

Statistical Tests for Random Numbers

Goal: Check whether a given binary sequence is random or not

A statistical test is formulated to test null hypothesis

• Null Hypothesis (H0): the sequence being tested is random
• Alternate Hypothesis (Ha): the sequence is not random

The test accepts or rejects the null hypothesis, i.e., whether the sequence
is (or is not) random.

NIST’s random number generation tests

The NIST Test Suite is a package of 15 statistical hypothesis tests to test the
randomness of arbitrary long binary sequences.

1. Frequency (monobit) test
2. Frequency test within a block
3. Runs test
4. Test for longest-run-of-ones in a block
5. Binary matrix rank test
6. Discrete Fourier transform (spectral) test
7. Non-overlapping template matching test
8. Overlapping template matching test
9. Maurer’s ‘Universal Statistical’ test
10.Linear complexity test
11.Serial test

12. Approximate entropy test
13. Cumulative sums test
14. Random excursions test
15. Random excursions variant test

NIST’s statistical tests: Their general framework

Step1: Collect bits of sufficient length

RNG under
test

Step2: Run a statistical test
and compute the test statistic.

Step3: Compute the Pvalue

Step4: Compare Pvalue with level of
significance α (generally α =0.01)

If Pvalue > α, then H0 accepted → Sequence is random

Else, H0 rejected → Sequence is non-random

P-value is the probability that a ‘perfect RNG’ would
have produced a sequence less random than the
sequence that was tested.

For α =0.01
confidence
is 99%

NIST’s statistical tests: Possible outcomes from a statistical test

(Image source: [NIST])

Like any statistical testing, there can be Type-I and Type-II errors.

A statistical hypothesis testing has two possible outcomes: accept or reject H0.

Type-I error: Test indicates that sequence is not-random when it really is random.
The probability of Type-I error is the ‘level of significance’ α.

Type-II error: Test indicates that sequence is random when it isn’t.

NIST’s statistical tests

“A Statistical Test Suite for Random and Pseudorandom Number Generators for
Cryptographic Applications” by NIST. Date Published: April 2010.
https://csrc.nist.gov/publications/detail/sp/800-22/rev-1a/final

NIST’s statistical tests: Two important functions

The tests use two functions for computing the Pvalue

1. The Gauss error function:

Image source: https://mathworld.wolfram.com/Erfc.html

NIST’s statistical tests: Two important functions

The tests use two functions for computing the Pvalue

2. The incomplete gamma function:

Image source:
https://nl.mathworks.com/help/matlab/ref/gammainc.html

PS: You get them as inbuilt functions in math calculators. E.g., GP/Pari has erfc(x) and
incgamc(a,x). Online gp/pari calculator in https://pari.math.u-bordeaux.fr/gp.html

Frequency (monobit) test

Purpose: Determine whether the number of ones and zeros in a sequence are approximately
the same as would be expected for a truly random sequence.

Test description: Input is a bit sequence of length n ≥ 100:

1. Sum all the bits

2. Compute the test statistic

3. Compute the Pvalue =

Decision rule: If Pvalue > α, then the input sequence is considered as random.
Otherwise it is considered as non-random.

Frequency (monobit) test

Purpose: Determine whether the number of ones and zeros in a sequence are approximately
the same as would be expected for a truly random sequence.

Test description: Input is a bit sequence of length n ≥ 100:

1. Sum all the bits

2. Compute the test statistic

3. Compute the Pvalue =

Decision rule: If Pvalue > α, then the input sequence is considered as random.
Otherwise it is considered as non-random.

For large Sobs (i.e., Sn is large) Pvalue is small.
Large Sn happens when number of 0s and 1s
are significantly different.

Next: Implementing NIST’s tests in HW

Challenges and Simplifications

Let’s consider the ‘Frequency Test’ as a case study.

• It is the simplest of all.
• Yet, its HW implementation can be challenging

Recap of the Frequency (monobit) test

Purpose: Determine whether the number of ones and zeros in a sequence are approximately
the same as would be expected for a truly random sequence.

Test description: Input is a bit sequence of length n ≥ 100:

1. Sum all the bits

2. Compute the test statistic

3. Compute the Pvalue =

Decision rule: If Pvalue > α, then the input sequence is considered as random.
Otherwise it is considered as non-random.

For large Sobs (i.e., Sn is large) Pvalue is small.
Large Sn happens when number of 0s and 1s
are significantly different.

HW building blocks for frequency test (1)

1. Sum all the bits

HW building blocks for frequency test (1)

1. Sum all the bits

This is a simple step. Implemented as a counter.

Counter Sn

Bits are input
serially

Increment by 1 if Bit = 1
Decrement by 1 if Bit = 0

HW building blocks for frequency test (2)

Requires
1. A square-root() operation, and
2. A division() by a real number.

2. Compute the test statistic

Both are expensive operations.
A floating-point arithmetic unit is needed.
Not easy to implement in HW.

HW building blocks for frequency test (3)

Requires the erfc() which computes integration

3. Compute Pvalue =

Much harder to implement in HW than the previous two operations!
Large area and memory requirements.

Can we simplify them so that we can implement in HW?

Note: We are interested in knowing whether
α < Pvalue is true of false.

Note: We are interested in knowing whether
α < Pvalue is true of false.

That is:

α <

When x increases, erfc(x) decreases monotonically.

α

XT

For a given α there is a threshold point XT s.t.
for all x > XT α ≥ erfc(x) (i.e., α ≥ Pvalue)

α < Pvalue α ≥ Pvalue

Simplification of frequency test (1)

3. Compute Pvalue =
No need to compute
erfc()

Simplification of step 3:
1. For a given α (=0.01 in our case) precompute XT

2. Check if Sobs < XT ➔
If true, then Pvalue > α and the sequence is random.
If false then the sequence is non-random.

Simplification of frequency test (2)

Further simplification:
1. In the previous slide, we were checking the comparison Sobs < XT

2. The equivalent will be checking if |Sn| < XT

Step 2 requires
1. A square-root() operation, and
2. A division() by a real number.

2. Compute the test statistic

We can avoid them too!

Simplification of frequency test (2)

Further simplification:
1. In the previous slide, we were checking the comparison Sobs < XT

2. The equivalent will be checking if |Sn| < XT

Step 2 requires
1. A square-root() operation, and
2. A division() by a real number.

2. Compute the test statistic

We can avoid them too!

If n is kept constant, then this is a comparison with a constant.
(Note: XT is also a constant if α is kept fixed)

Simplified frequency test: Summary

Counter SnBit sequence Comparison

Cn,α

Test pass/fail

Where Sn is the sum of the bits,

and Cn,α = XT is a constant for a fixed n and α.

NIST’s random number generation tests

The NIST Test Suite is a package of 15 statistical hypothesis tests to test the
randomness of arbitrary long binary sequences.

1. Frequency (monobit) test
2. Frequency test within a block
3. Runs test
4. Test for longest-run-of-ones in a block
5. Binary matrix rank test
6. Discrete Fourier transform (spectral) test
7. Non-overlapping template matching test
8. Overlapping template matching test
9. Maurer’s ‘Universal Statistical’ test
10.Linear complexity test
11.Serial test

12. Approximate entropy test
13. Cumulative sums test
14. Random excursions test
15. Random excursions variant test

Frequency test within a block

Purpose: Determine whether the frequency of ones in an M-bit block is approximately M/2,
as would be expected for a truly random sequence.

Test description: Input is a bit sequence of length n ≥ 100. Block size M > 0.01n.

1. Split the input sequence into M-bit non-overlapping sub-sequences.

2. Determine the proportion πi of ones in each M-bit block

3. Compute the χ2 statistic:

4. Compute the Pvalue =

Decision rule: If Pvalue > α, then the input sequence is considered as random.
Otherwise it is considered as non-random.

Runs test
A ‘run’ is an uninterrupted sequence of identical bits.

E.g.,

Run of 3

1 1 1 0 1 0 0 1 1

Run of 1

Run of 1

Run of 2

Run of 2

Runs test

Purpose: Determine whether the number of runs of 0s and 1s of various lengths is as
expected for a random sequence.

Runs test is applicable only if the frequency test is passed.

1. Compute the proportion π of ones in the input sequence:

2. Compute the test statistic: where

3. Compute the Pvalue

Test description: Input is a bit sequence of length n ≥ 100:

If and otherwise.

Decision rule: Same as the previous tests.

NIST’s random number generation tests

1. Frequency (monobit) test
2. Frequency test within a block
3. Runs test
4. Test for longest-run-of-ones in a block
5. Binary matrix rank test
6. Discrete Fourier transform (spectral) test
7. Non-overlapping template matching test
8. Overlapping template matching test
9. Maurer’s ‘Universal Statistical’ test
10.Linear complexity test
11.Serial test

12. Approximate entropy test
13. Cumulative sums test
14. Random excursions test
15. Random excursions variant test

Non-overlapping template matching test

Purpose: Detect if there are too many occurrences of a given non-periodic pattern in the
input binary sequence.

1. Input string is split into blocks of size M-bits. Thus, there are N = n/M blocks.

Example: Let of length n = 20. Let M=10, and N=2.

Non-overlapping template matching test

Purpose: Detect if there are too many occurrences of a given non-periodic pattern in the
input binary sequence.

1. Input string is split into blocks of size M-bits. Thus, there are N = n/M blocks.

2. For a given target pattern B, count the number of appearances of B in each block.

Example: Let of length n = 20. Let M=10, and N=2.

Example: Let B = 001.

(See next slide)

Block 1 Block 2

Non-overlapping template matching test (2)

The first block = 1 0 1 0 0 1 0 0 1 0 Specified string B = 0 0 1

Initialize counter for the number of matches W1 = 0

Non-overlapping template matching test (2)

The first block = 1 0 1 0 0 1 0 0 1 0 Specified string B = 0 0 1

Counter for the number of matches W1 = 0

No match. Hence slide window by one bit.

Non-overlapping template matching test (2)

The first block = 1 0 1 0 0 1 0 0 1 0 Specified string B = 0 0 1

Counter for the number of matches W1 = 0

No match. Hence slide window by one bit.

Non-overlapping template matching test (2)

The first block = 1 0 1 0 0 1 0 0 1 0 Specified string B = 0 0 1

Counter for the number of matches W1 = 0

No match. Hence slide window by one bit.

Non-overlapping template matching test (2)

The first block = 1 0 1 0 0 1 0 0 1 0 Specified string B = 0 0 1

Increment counter for the number of matches W1 = 0 + 1

Match! Slide window by the length of B, i.e., 3 bits.

Non-overlapping template matching test (2)

The first block = 1 0 1 0 0 1 0 0 1 0 Specified string B = 0 0 1

Another match! Stop sliding as there are insufficient leftover bits.

Increment counter for the number of matches W1 = W1 + 1 = 2

Next, repeat this for all the M-bit blocks and compute W2, W3, …

Non-overlapping template matching test (3)

1. Using the previous method, compute W1, W2, …, WN for all the N blocks

2. Compute the theoretical mean μ and variance σ2 as

where M is the size of each block, and m is the size of the specified pattern B.
(In the previous example M = 10 and m = 3)

3. Compute the test statistic

4. Compute the Pvalue

Test description:

Decision rule: Same as the previous tests.

NIST’s random number generation tests

1. Frequency (monobit) test
2. Frequency test within a block
3. Runs test
4. Test for longest-run-of-ones in a block
5. Binary matrix rank test
6. Discrete Fourier transform (spectral) test
7. Non-overlapping template matching test
8. Overlapping template matching test
9. Maurer’s ‘Universal Statistical’ test
10.Linear complexity test
11.Serial test

12. Approximate entropy test
13. Cumulative sums test
14. Random excursions test
15. Random excursions variant test

Overlapping template matching test

Somewhat similar to the previous non-overlapping template matching test.

1. Input string is split into blocks of size M-bits. Thus, there are N = n/M blocks.

E.g., ε = 1011101111 0010110100 0111001011 1011111000 0101101001

Block 1 Block 2 Block 3 Block 4 Block 5

Where sequence length n = 50, block length M = 10, number of blocks N = n/M = 5

Overlapping template matching test (1)

2. An array of 6 counters is initialized to all 0s.

This counters will be incremented during the template matching operation
using the following rule.

a. V0 is incremented if the M-bit block contains 0 occurrence of B
b. V1 is incremented if the M-bit block contains only 1 occurrence of B
c. V2 is incremented if the M-bit block contains only 2 occurrences of B
d. V3 is incremented if the M-bit block contains only 3 occurrences of B
e. V4 is incremented if the M-bit block contains only 4 occurrences of B
f. V5 is incremented if the M-bit block contains ≥ 5 occurrences of B

v1 = 0 v2 = 0 v3 = 0 v4 = 0 v5 = 0v0 = 0

Overlapping template matching test (1)

Example of counter update.

Let’s consider the 1st block = 1 0 1 1 1 0 1 1 1 1

And let the specified pattern be B = ‘11’.

v1 = 0 v2 = 0 v3 = 0 v4 = 0 v5 = 0v0 = 0

Counter before template matching starts in the block.

Number of matches within the block = 0.

Overlapping template matching test (1)

Example of counter update.

Let’s consider the 1st block = 1 0 1 1 1 0 1 1 1 1

No match with B = ‘11’.
Always slide by 1 bit.

v1 = 0 v2 = 0 v3 = 0 v4 = 0 v5 = 0v0 = 0

Number of matches within the block = 0.

V[] counter doesn’t change during the process.

Overlapping template matching test (1)

Example of counter update.

Let’s consider the 1st block = 1 0 1 1 1 0 1 1 1 1

No match with B = ‘11’.
Always slide by 1 bit.

v1 = 0 v2 = 0 v3 = 0 v4 = 0 v5 = 0v0 = 0

Number of matches within the block = 0.

V[] counter doesn’t change during the process.

Overlapping template matching test (1)

Example of counter update.

Let’s consider the 1st block = 1 0 1 1 1 0 1 1 1 1

Match with B = ‘11’.
Always slide by 1 bit. (This was different in non-overlap. Test)

v1 = 0 v2 = 0 v3 = 0 v4 = 0 v5 = 0v0 = 0

Number of matches within the block = 1.
This counter
increments

V[] counter doesn’t change during the process.

Overlapping template matching test (1)

Example of counter update.

Let’s consider the 1st block = 1 0 1 1 1 0 1 1 1 1

Another match with B = ‘11’.
Always slide by 1 bit.

v1 = 0 v2 = 0 v3 = 0 v4 = 0 v5 = 0v0 = 0

Number of matches within the block = 2.
This counter
increments

V[] counter doesn’t change during the process.

Overlapping template matching test (1)

Example of counter update.

Let’s consider the 1st block = 1 0 1 1 1 0 1 1 1 1

No match with B = ‘11’.
Always slide by 1 bit.

v1 = 0 v2 = 0 v3 = 0 v4 = 0 v5 = 0v0 = 0

Number of matches within the block = 2.

V[] counter doesn’t change during the process.

Overlapping template matching test (1)

Example of counter update.

Let’s consider the 1st block = 1 0 1 1 1 0 1 1 1 1

No match with B = ‘11’.
Always slide by 1 bit.

v1 = 0 v2 = 0 v3 = 0 v4 = 0 v5 = 0v0 = 0

Number of matches within the block = 2.

V[] counter doesn’t change during the process.

Overlapping template matching test (1)

Example of counter update.

Let’s consider the 1st block = 1 0 1 1 1 0 1 1 1 1

Match with B = ‘11’.
Always slide by 1 bit.

v1 = 0 v2 = 0 v3 = 0 v4 = 0 v5 = 0v0 = 0

Number of matches within the block = 3.
This counter
increments

V[] counter doesn’t change during the process.

Overlapping template matching test (1)

Example of counter update.

Let’s consider the 1st block = 1 0 1 1 1 0 1 1 1 1

Another match with B = ‘11’.
Always slide by 1 bit.

v1 = 0 v2 = 0 v3 = 0 v4 = 0 v5 = 0v0 = 0

Number of matches within the block = 4.
This counter
increments

V[] counter doesn’t change during the process.

Overlapping template matching test (1)

Example of counter update.

Let’s consider the 1st block = 1 0 1 1 1 0 1 1 1 1

Another match with B = ‘11’.
Always slide by 1 bit.

v1 = 0 v2 = 0 v3 = 0 v4 = 0 v5 = 0v0 = 0

V[] counter doesn’t change during the process.

Number of matches within the block = 5.
This counter
increments

Overlapping template matching test (1)

Example of counter update.

Let’s consider the 1st block = 1 0 1 1 1 0 1 1 1 1

v1 = 0 v2 = 0 v3 = 0 v4 = 0 v5 = 1v0 = 0

Number of matches within the block = 5.

Template matching within this block has finished.

As the number of matches within the block is ≥ 5, increment V5 by 1.

Overlapping template matching test (2)

Continue in the same manner for all the remaining blocks.

For the 2nd block = 0 0 1 0 1 1 0 1 0 0

v1 = 1 v2 = 0 v3 = 0 v4 = 0 v5 = 1v0 = 0

Number of matches within the 2nd block = 1.

Hence increment V1 by 1.

Overlapping template matching test (3)

3. Compute

where π0, π1, …, π5 are constants specified in Section 3.8 of [NIST].
(They dependent on the block size M and template size m).

4. Compute Pvalue =

Decision rule: Same as the previous tests, i.e., if Pvalue > α, then the input sequence
is considered as random. Otherwise it is considered as non-random.

NIST’s random number generation tests

1. Frequency (monobit) test
2. Frequency test within a block
3. Runs test
4. Test for longest-run-of-ones in a block
5. Binary matrix rank test
6. Discrete Fourier transform (spectral) test
7. Non-overlapping template matching test
8. Overlapping template matching test
9. Maurer’s ‘Universal Statistical’ test
10.Linear complexity test
11.Serial test

12. Approximate entropy test
13. Cumulative sums test
14. Random excursions test
15. Random excursions variant test

The remaining statistical tests will not be covered in the lecture.

The specification document from NIST describes all the 15 tests in great detail
and with examples.

“A Statistical Test Suite for Random and Pseudorandom Number Generators for
Cryptographic Applications” by NIST. Date Published: April 2010.
https://csrc.nist.gov/publications/detail/sp/800-22/rev-1a/final

In most cases, we will use these tests in ‘black box’ manner to draw inference
on the quality of generated randomness.

Demo: Using NIST’s test suit

Homework thoughts

How could you simplify the other tests so that they are
lightweight and easy to implement on HW platforms?

