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Raw random numbers produced in this way are generally not IID, i.e., 
independent and identically distributed.
• Bits are biased
• and contain correlation

Could we mitigate or remove statistical defects in raw random data?  



Postprocessing (conditioning) of Raw Random Bits  

‘Postprocessing’ is an application of a deterministic algorithm to removes or mitigates 
statistical defects from TRNG-produced raw random data (which contains defects).

• Increases randomness per bit by performing data compression.

• Some entropy is always lost due to data compression

• It doesn’t produce any ‘new’ randomness



Postprocessing (conditioning) of Raw Random Bits  

‘Postprocessing’ is an application of a deterministic algorithm to removes or mitigates 
statistical defects from TRNG-produced raw random data (which contains defects).

• Increases randomness per bit by performing data compression.

• Some entropy is always lost due to data compression

• It doesn’t produce any ‘new’ randomness

There are two ways of postprocessing raw random bits:

1. Arithmetic postprocessing → do not rely on cryptographic primitives

2. Cryptographic postprocessing → rely on cryptographic primitives



Arithmetic postprocessing: Parity filter or XOR processing (1)

• Raw random bits are split into blocks of length nf bits and 
• Then the bits within each chunk are XORed

1 1 0 1 1 0 0 1 0 0 1 1 1 0 1 0 … with nf = 2

Example:
Raw bit sequence:

XORed bit sequence: 0    1     1    1    0    0    1    1      



Arithmetic postprocessing: Parity filter or XOR processing (2)

• Raw random bits are split into blocks of length nf bits and 
• Then the bits within each chunk are XORed

1 1 0 1 1 0 0 1 0 0 1 1 1 0 1 0 … with nf = 2

Example:
Raw bit sequence:

XORed bit sequence: 0    1     1    1    0    0    1    1      

Data compression factor is nf.

If the raw data has a bias 
then the postprocessed data has a bias:



Arithmetic postprocessing: Von Neuman Processing (1)

This method removes bias completely.

Steps: 
1. Partition the input bit string into 2-bit blocks.
2. Discard all ’00’ and ‘11’ blocks.
3. If a block is ‘01’ then the output bit is 1; If a block is ‘10’ then the output bit is 0. 

1 1 0 1 1 0 0 1 0 0 1 1 1 0 1 0 … 
Example:
Raw bit sequence:

Output bit sequence: - 1     0    1     - - 0    0      



Arithmetic postprocessing: Von Neuman Processing (2)

This method removes bias completely.

Steps: 
1. Partition the input bit string into 2-bit blocks.
2. Discard all ’00’ and ‘11’ blocks.
3. If a block is ‘01’ then the output bit is 1; If a block is ‘10’ then the output bit is 0. 

1 1 0 1 1 0 0 1 0 0 1 1 1 0 1 0 … 
Example:
Raw bit sequence:

Output bit sequence: - 1     0    1     - - 0    0      

Output is produced at a variable rate.
If input has a throughput Tin then the average throughput of output is Tin·p1·(1 – p1). 



Arithmetic postprocessing: Resilient Function [SMS07]

Definition [SMS07]: An (n, m, t)-resilient function is a function 

F(x1, x2, …, xn) = (y1, y2, …, ym) 

from Zn to Zm enjoying the property that for any t coordinates i1, …, it, for any 
constants a1, …, at from Z2 and any element y of the codomain

[SMS07] B. Sunar, W.J. Martin, and D.R. Stinson. “A Provably Secure True Random Number Generator with Built-In Tolerance to Active Attacks”.
IEEE Trans. on Comp., Vol. 56, No. 1, 2007.

2 2

Pr( F(x) = y | xi1 = a1, …, xit = at ) = 1/2m.



Arithmetic postprocessing: Resilient Function [SMS07]

2n points

2m points

An (n, m, t)-resilient 
function F() 

Coordinates (x1, x2, …, xn)

Coordinates (y1, y2, …, ym)

Knowledge of any ≤ t coordinates of input doesn’t give any advantage in predicting output.
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2n points
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An (n, m, t)-resilient 
function F() 

Coordinates (x1, x2, …, xn)

Coordinates (y1, y2, …, ym)

Knowledge of any ≤ t coordinates of input doesn’t give any advantage in predicting output.

If we know that at most t out of n bits are 
deterministic, then we can apply an (n, m, t)-resilient 

function and obtain m-bits of true randomness.

Example:  Use an (L, m, L/10)-resilient 
function if 10% of the bits are deterministic.



Arithmetic postprocessing: Example of a Resilient Function

[SMS07] used a linear error correcting code C = [n, m, d] to implement a 
[n, m, d-1] resilient function. 

Gf(x) = 

T

x ·

This code can correct up to (d -1) “errors” 



Arithmetic postprocessing: Example of a Resilient Function

[SMS07] used a linear error correcting code C = [n, m, d] to implement a 
[n, m, d-1] resilient function. 

Gf(x) = 

T

x ·

[SPV06] D. Schellekens, B. Preneel, I. Verbauwhede. "FPGA Vendor Agnostic True Random Number Generator". IEEE FPL 2006. 

[SPV06] used a cyclic code for compact implementation on hardware platforms.

G = 



Summary: Postprocessing (conditioning) of Raw Random Bits  

‘Postprocessing’ is an application of a deterministic algorithm to removes or mitigates 
statistical defects from TRNG-produced raw random data (which contains defects).

• Increases randomness per bit by performing data compression.

• Some entropy is always lost due to data compression

• It doesn’t produce any ‘new’ randomness

There are two ways of postprocessing raw random bits:

1. Arithmetic postprocessing → do not rely on cryptographic primitives

2. Cryptographic postprocessing → rely on cryptographic primitives



Cryptographic postprocessing

A cryptographic postprocessing uses a cryptographic primitive to process the raw
random bits and then produce uniformly distributed random bits.

NIST recommended keyed algorithms for cryptographic postprocessing:
1. HMAC with any standardized hash function
2. CMAC with AES block cipher
3. CBC-MAC with AES block cipher

NIST recommended un-keyed algorithms for cryptographic postprocessing:
1. Any standardized hash function
2. Hash_df with any standardized hash function
3. Block_Cipher_df with AES block cipher
(Note: df stands for derivative function)



Cryptographic postprocessing: Example using CBC-MAC 

Partition raw random bits into 128-bit blocks and use each block as a message-block.

E is AES-128.
The number of blocks ≥ 2.



Cryptographic postprocessing

Detailed technical information available on the NIST special publication SP 800-90A
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