

Hardware Challenges in Homomorphic Encryption

Sujoy Sinha Roy sujoy.sinharoy@iaik.tugraz.at

Privacy-Preserving Outsourcing of Computation

Diabetic Retinopathy [Chao et al., 2019]

User wants to compute *foo(data*) in the cloud without loosing privacy.

Definition: Homomorphic Encryption Scheme

An encryption scheme $Enc(\cdot, \cdot)$ is homomorphic for an operation \Box on the message space iff

$$Enc(m_1 \square m_2, k_E) = Enc(m_1, k_E) \circ Enc(m_2, k_E)$$

with o operation on the ciphertext.

- If \Box = + then Enc(\cdot , \cdot) is additively homomorphic.
- If $\Box = \times$ then Enc(\cdot , \cdot) is multiplicatively homomorphic.

Example: Textbook RSA is multiplicatively homomorphic

• You have encryption of two messages m₁ and m₂ where

 $c_1 = m_1^e \mod N$ $c_2 = m_2^e \mod N$

• By multiplying c_1 and c_2 you get $c_3 = c_1 \cdot c_2 = (m_1 \cdot m_2)^e \mod N$

• Hence, c_3 is encryption of $m_1 \cdot m_2$

Fully Homomorphic Encryption (FHE)

An encryption scheme $Enc(\cdot, \cdot)$ is homomorphic for an operation \Box on the message space iff

$$Enc(m_1 \square m_2, k_E) = Enc(m_1, k_E) \circ Enc(m_2, k_E)$$

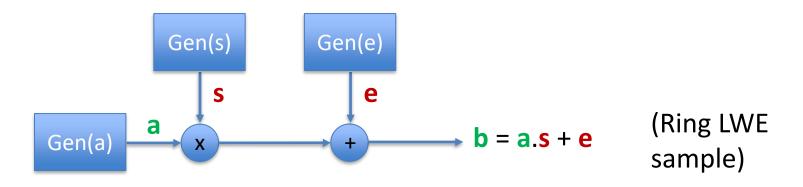
An encryption scheme is called Fully Homomorphic Encryption (FHE) when it supports both + and × on ciphertexts.

- If $\Box = +$ then Enc(\cdot , \cdot) is additively homomorphic.
- If $\Box = \times$ then Enc(\cdot , \cdot) is multiplicatively homomorphic.

Recap -- Ring LWE Public-Key Encryption (PKE)

Generation:

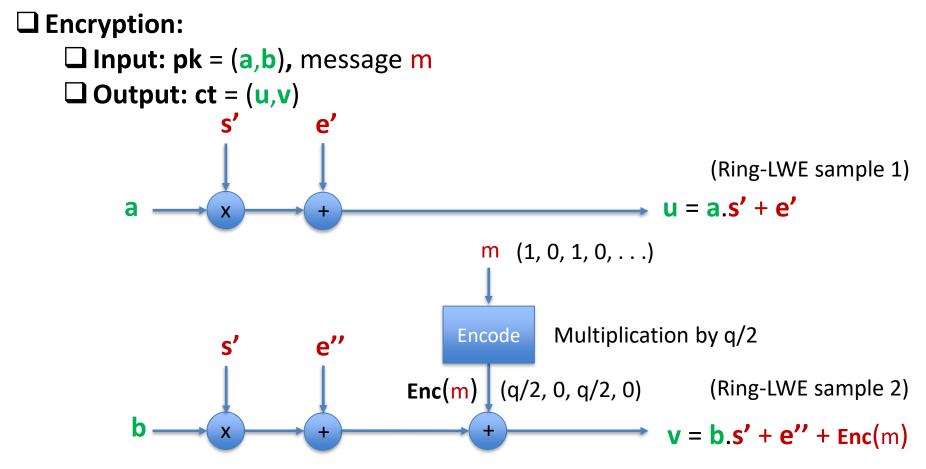
Output: public key (pk), secret key (sk)



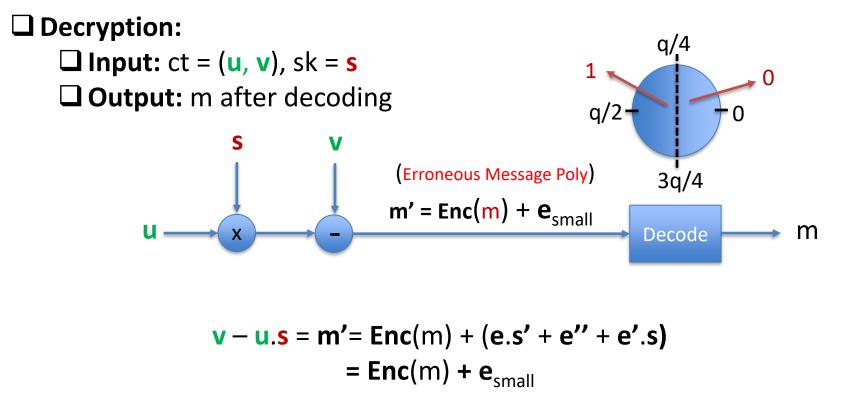
Arithmetic operations are performed in a polynomial ring R_q **Public Key (pk):** (a,b) **Secret Key (sk):** (s)

V. Lyubashevsky, C. Peikert, and O. Regev. "On Ideal Lattices and Learning with Errors Over Rings". IACR ePrint 2012/230.

Recap -- Ring LWE Public-Key Encryption (PKE)



Recap -- Ring LWE Public-Key Encryption (PKE)



Select most significant bit of each coefficient as the message bits

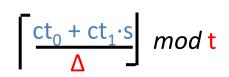
Ring-LWE PKE – Written with different symbols

Secret key: polynomial s Public-key: polynomials (p_0, p_1) Plaintext modulus: 2 Ciphertext modulus: q Scale factor: $\Delta = q/2$

Encryption

Decryption

 $e_0, e_1, u \leftarrow error();$ $ct_0 = p_0 \cdot u + e_1 + \Delta \cdot m$ $ct_1 = p_1 \cdot u + e_2$



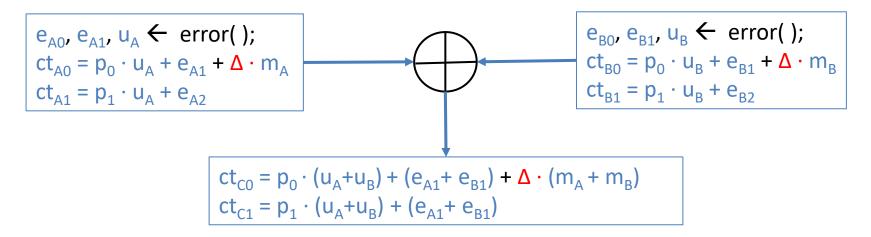
Polynomials are in blue Scalars are in red

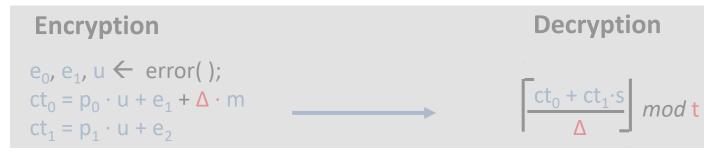
Ring-LWE PKE shows Homomorphism

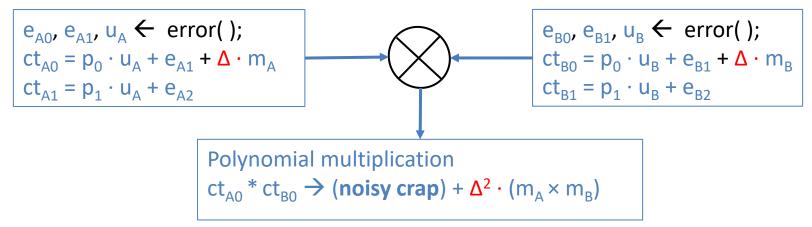
Now consider two ciphertexts $Ct_A = \{ct_{A0}, ct_{A1}\}$ and $Ct_B = \{ct_{B0}, ct_{B1}\}$

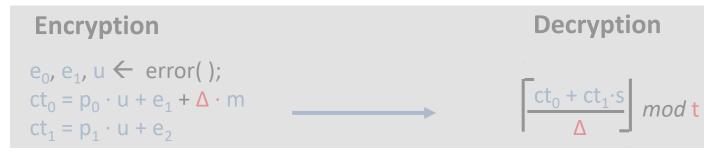
 $e_{A0}, e_{A1}, u_A \leftarrow error();$ $ct_{A0} = p_0 \cdot u_A + e_{A1} + \Delta \cdot m_A$ $ct_{A1} = p_1 \cdot u_A + e_{A2}$ $e_{B0}, e_{B1}, u_{B} \leftarrow error();$ $ct_{B0} = p_{0} \cdot u_{B} + e_{B1} + \Delta \cdot m_{B}$ $ct_{B1} = p_{1} \cdot u_{B} + e_{B2}$

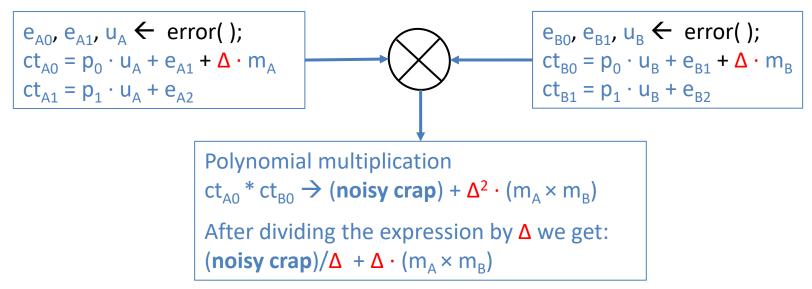
Ring-LWE PKE: Additive Homomorphism

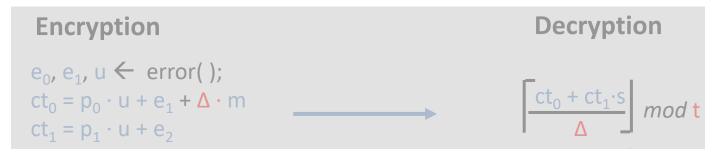


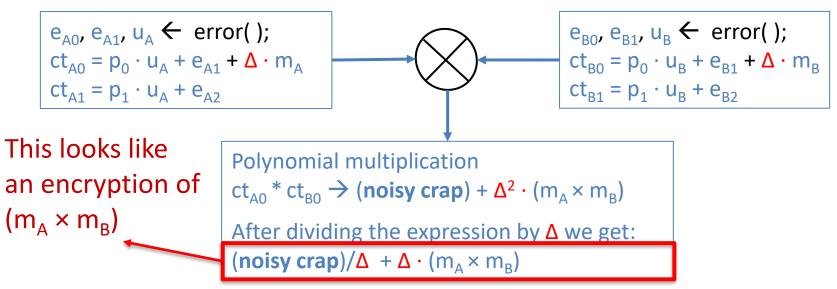




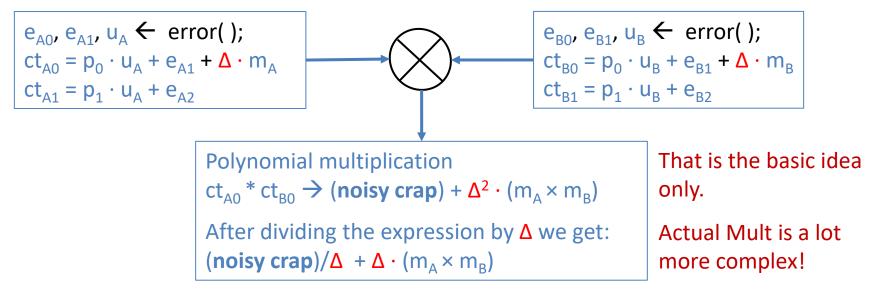




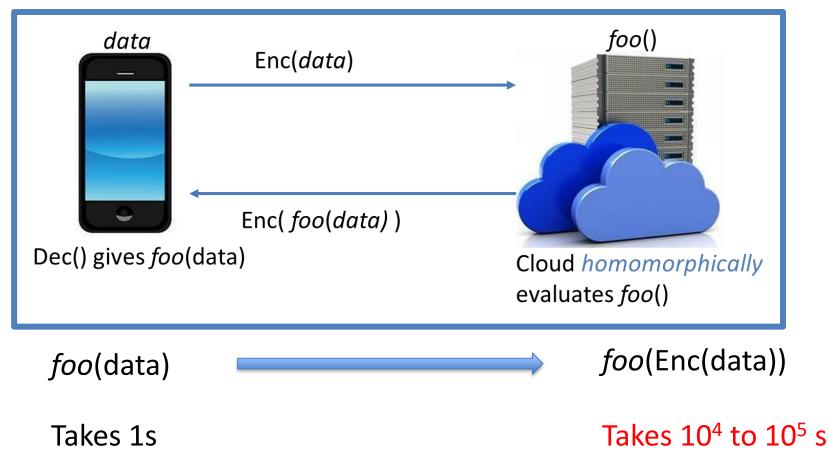




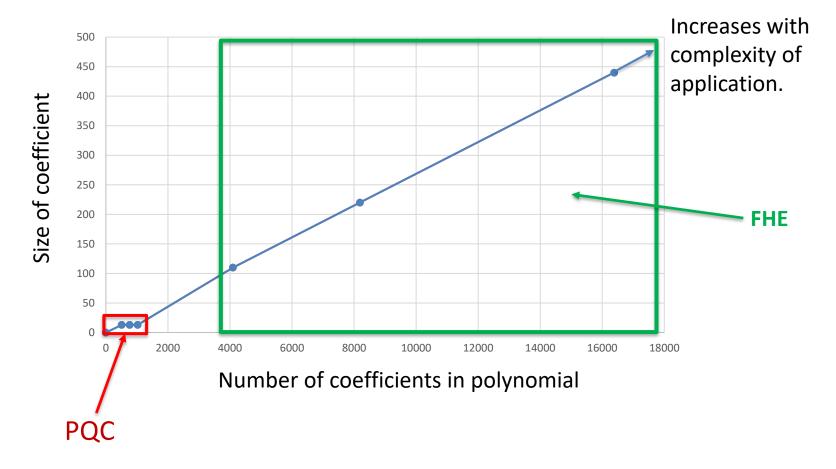




The Biggest Problem in FHE



Parameters for PQC and FHE



Like Public-key encryption, FHE does lots of polynomial arithmetic.

How to design a hardware accelerator for FHE?

What makes implementation of FHE very challenging?

- Lots of polynomial arithmetic operations
 - Large degree polynomial arithmetic
 - Long integer arithmetic
- Big operands
 - Ciphertexts could be several MBs
- Memory management in HW accelerators
 - On-Chip memory is limited
 - Off-Chip data transfer is very slow

What makes implementation of FHE very challenging?

- Lots of polynomial arithmetic operations
 - Large degree polynomial arithmetic
 - Long integer arithmetic
 This problem is solved using CRT
- Big operands
 - Ciphertexts could be several MBs
- Memory management in HW accelerators
 - On-Chip memory is limited
 - Off-Chip data transfer is very slow

Dealing with long-int coefficients using RNS

We can take a modulus $q = \prod q_i$ where q_i are coprime. Then we can work with Residue Number System (RNS). Chinese Arithmetic *mod* q_{0} Arithmetic *mod* q_1 Remainder Arithmetic *mod q* Theorem ... Arithmetic *mod* q_1 (CRT) **RNS** arithmetic Result mod q Small coefficients

• Parallel computation

What makes implementation of FHE very challenging?

- Lots of polynomial arithmetic operations
 - Large degree polynomial arithmetic
 - Long integer arithmetic
- Big operands
 - Ciphertexts could be several MBs
- Memory management in HW accelerators
 - On-Chip memory is limited
 - Off-Chip data transfer is very slow

How to multiply two very large polynomials?

- Schoolbook multiplication: $O(n^2)$
- Karatsuba multiplication: $O(n^{1.585})$
- Toom-Cook (generalization of Karatsuba)
- Fast Fourier Transform (FFT) multiplication: O(n log n)

Which one is the best choice?

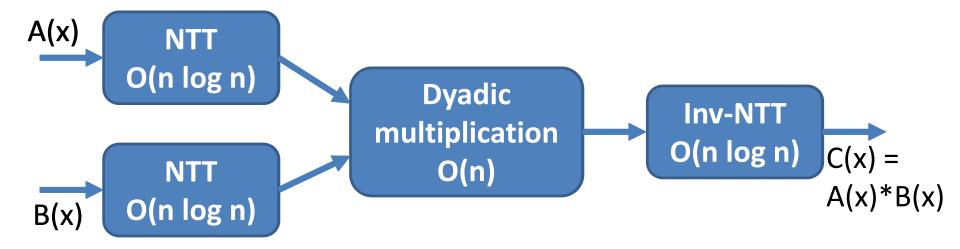
How to multiply two very large polynomials?

- Schoolbook multiplication: $O(n^2)$
- Karatsuba multiplication: $O(n^{1.585})$
- Toom-Cook (generalization of Karatsuba)
- Fast Fourier Transform (FFT) multiplication: O(n log n)

Which one is the best choice?

Asymptotic complexity plays its role.

NTT-based Polynomial Multiplication



NTT or Number Theoretic Transform

Let's consider an application example.

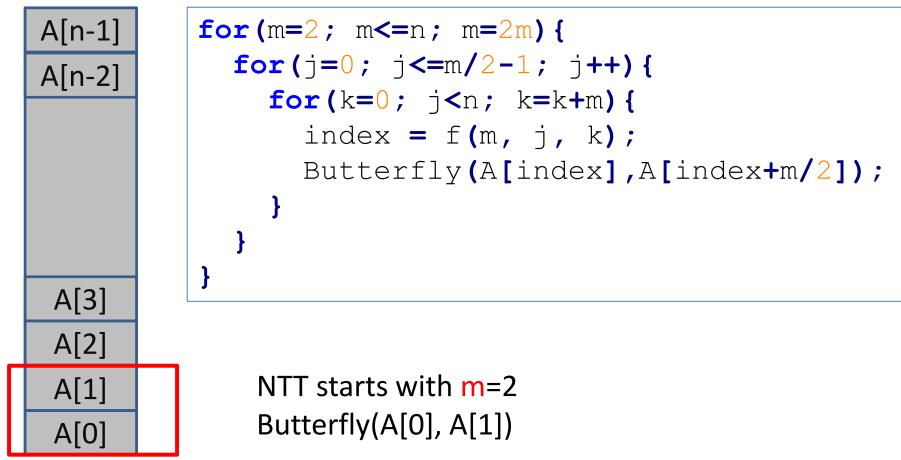
Polynomial size $n = 2^{15}$ Log(q) = 60

NTT and of a polynomial A[] Simplified NTT loops

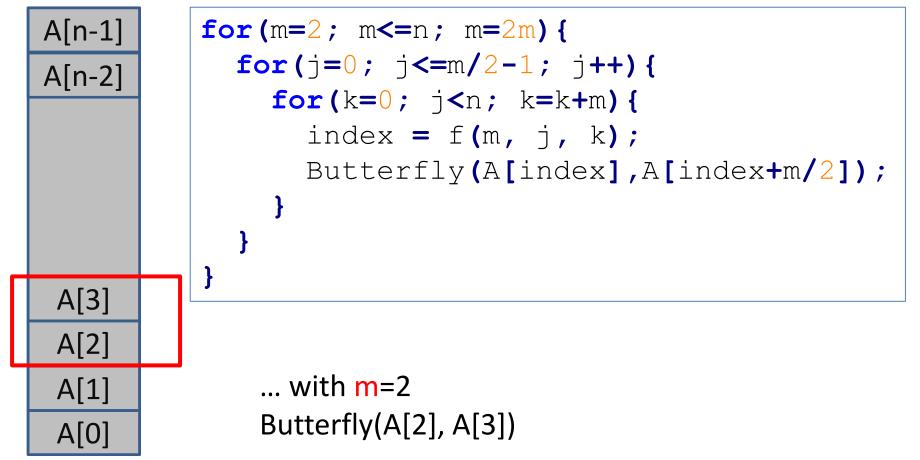
```
A[n-1]
A[n-2]
 A[3]
 A[2]
 A[1]
 A[0]
```

for (m=2; m<=n; m=2m) {</pre> for (j=0; j<=m/2-1; j++) {</pre> for(k=0; j<n; k=k+m) {</pre> index = f(m, j, k); Butterfly(A[index],A[index+m/2]);

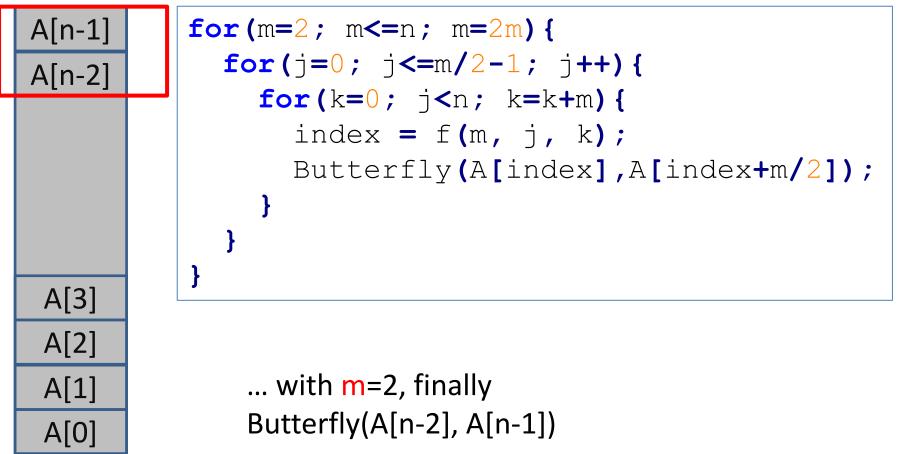
Simplified NTT loops



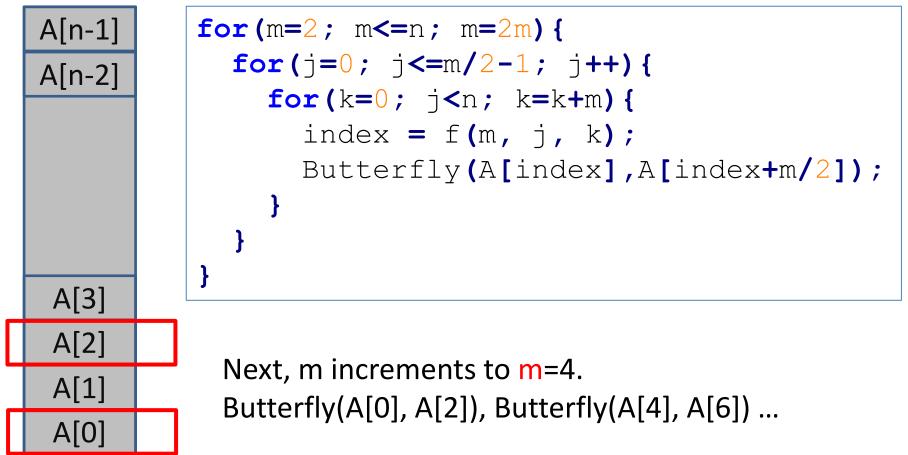
Simplified NTT loops



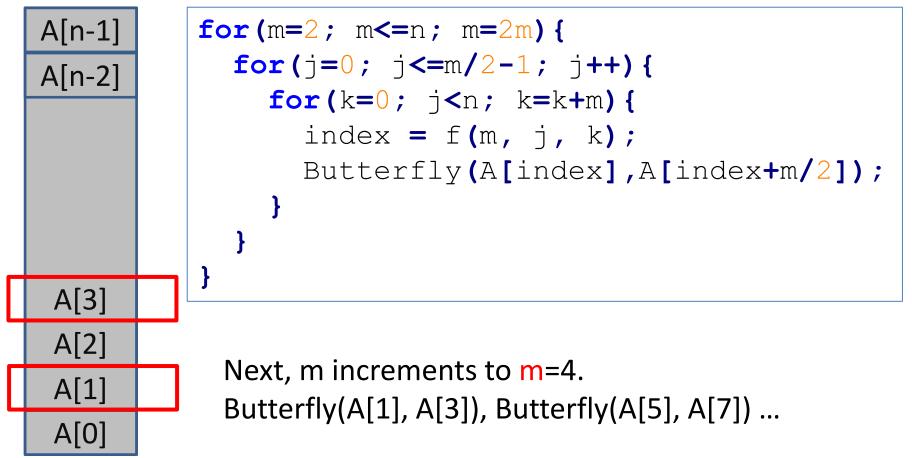
Simplified NTT loops



Simplified NTT loops



Simplified NTT loops



Can we speedup polynomial multiplication using several NTT cores in parallel?

Answer: Yes

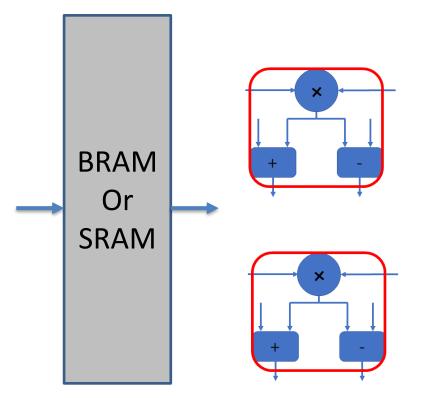
Can we speedup polynomial multiplication using several NTT cores in parallel?

Answer: Yes

Is parallel NTT easy to implement?

Answer: Complexity of implementation increases with number of cores

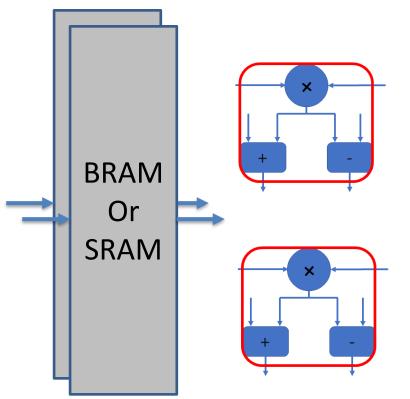
Parallel NTT Challenge: Port limitation in BRAM or SRAM



Problem:

- One BRAM has only two ports.
- Each NTT core needs two ports

Parallel NTT Challenge: Port limitation in BRAM or SRAM



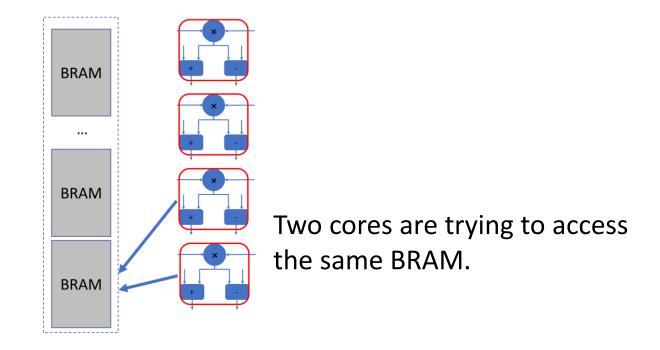
Problem:

- One BRAM has only two ports.
- Each NTT core needs two ports

To get parallel NTT, designers instantiate *parallel* BRAMs in parallel.

Memory access conflict

• Two or more cores try to read/write the same BRAM element. But BRAM has a limited number of ports to satisfy one core.



Memory access conflict

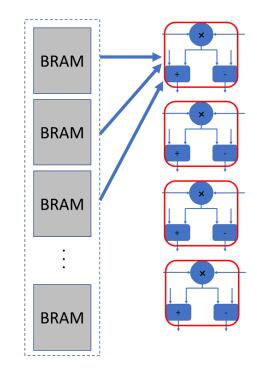
• Two or more cores try to read/write the same BRAM element. But BRAM has a limited number of ports to satisfy one core.

> BRAM ... BRAM Two cores are trying to access the same BRAM. BRAM

Solution: Cores generate addresses such that they are mutually exclusive.

Long data routing

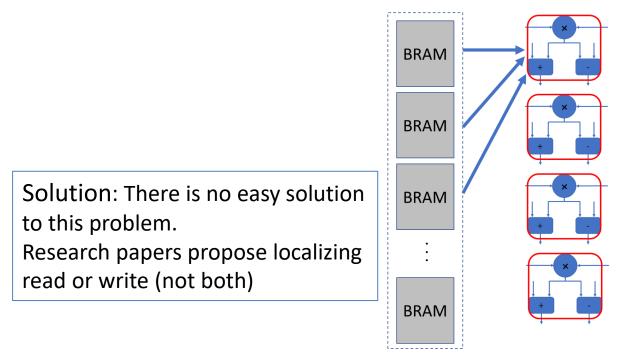
- Core requires data from distant BRAM memory
 - Long routing of data wires \rightarrow slow clock frequency



Core is reading data from far memory.

Long data routing

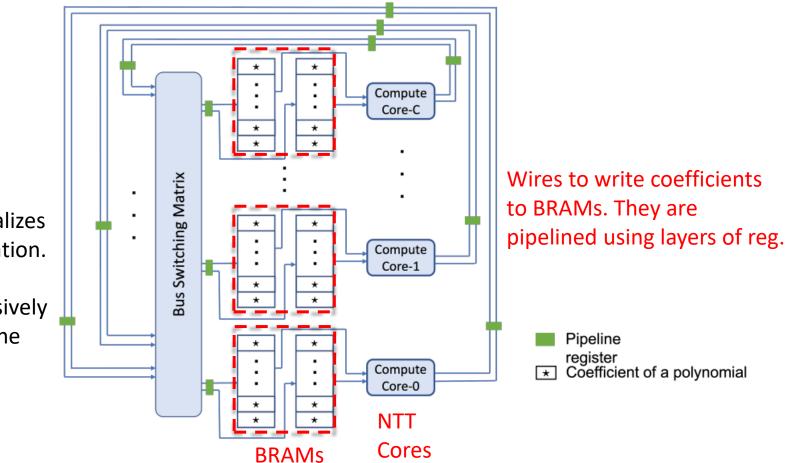
- Core requires data from distant BRAM memory
 - Long routing of data wires \rightarrow slow clock frequency



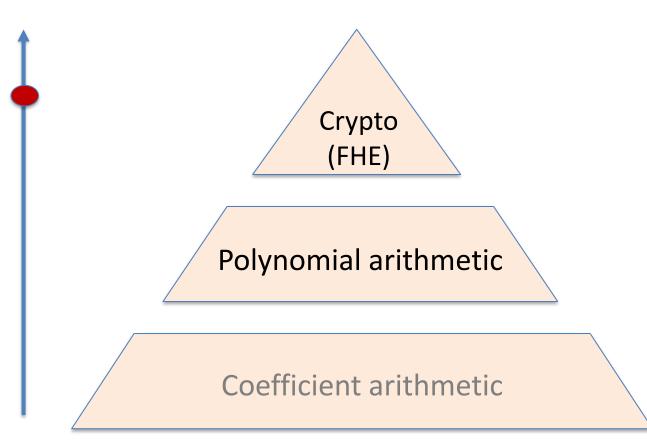
Core is reading data from far memory.

This paper localizes the read operation.

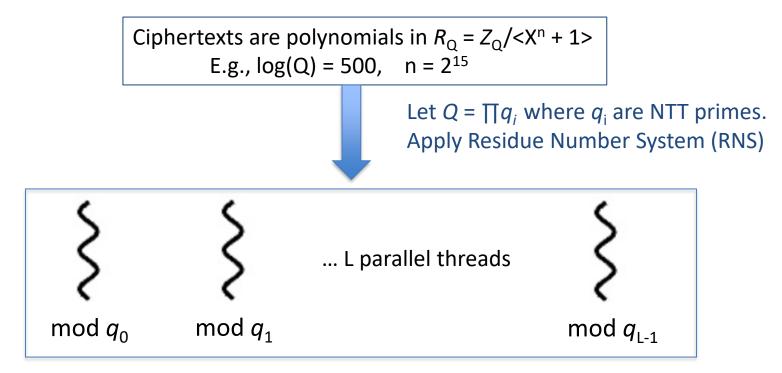
BRAM is exclusively read by only one core.



Next, FHE accelerator

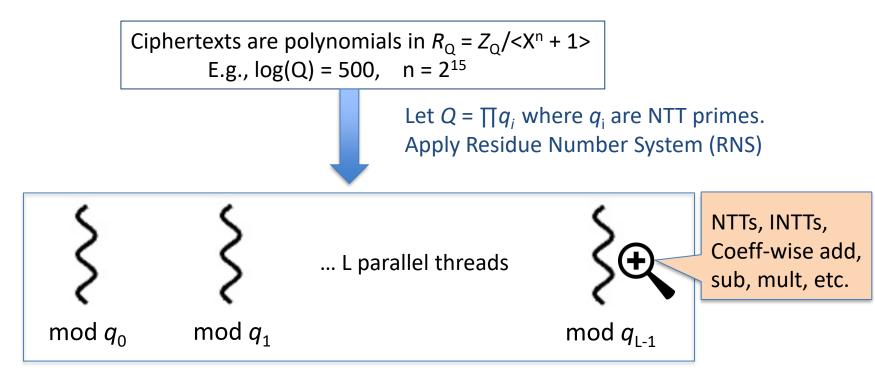


High level computation flow

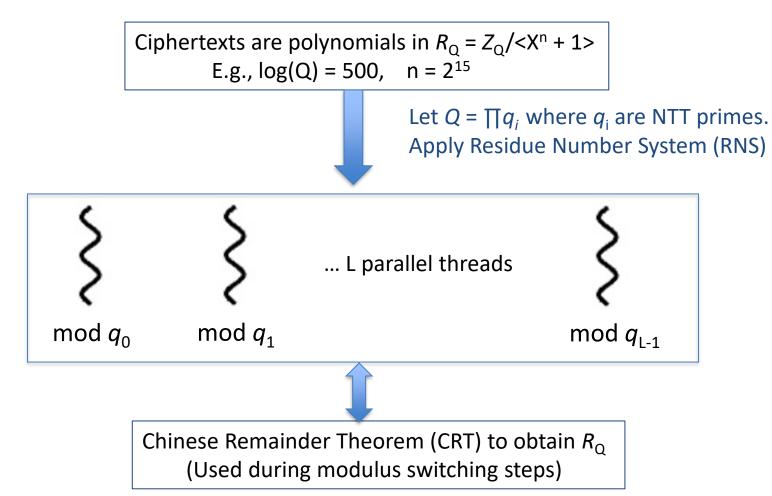


Each thread perform arithmetic in residue polynomial ring R_{qi}

High level computation flow



High level computation flow



High level accelerator architecture

 $\frac{1}{RPAU_{0}()} \qquad RPAU_{1}() \qquad \dots L \text{ parallel modules} \qquad \frac{1}{RPAU_{L-1}()} \qquad \text{diagram}$

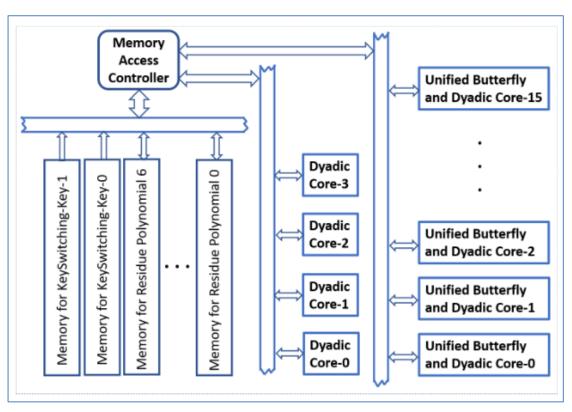
*RPAU stands for Residue Polynomial Arithmetic Unit

RPAU ()

module RPAU () Each RPAU() module must support arithmetic modulo q_i

- NTT
- INTT
- Modular reduction by q_i
- Coefficient-wise modular addition
- Coefficient-wise modular multiplication

RPAU ()

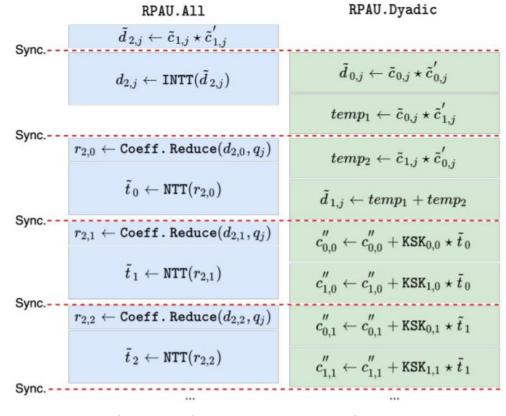


Example RPAU. It uses 16 NTT butterfly cores and 4 coefficient-wise (dyadic) arithmetic cores. Polynomials are stored in 'Memory' made of BRAMs.

Instruction Parallelism in RPAU ()

 $\tilde{d}_{0,j} \leftarrow \tilde{c}_{0,j} \star \tilde{c}'_{0,j}$ HE. Mult $ilde{d}_{1,j} \leftarrow ilde{c}_{0,j} \star ilde{c}_{1,j}' + ilde{c}_{1,j} \star ilde{c}_{0,j}'$ $\tilde{d}_{2,j} \leftarrow \tilde{c}_{1,j} \star \tilde{c}_{1,j}'$ $\{c_{0,i}'',c_{1,i}''\} \leftarrow 0$ HE. Relin $d_{2,i} \leftarrow \text{INTT}(d_{2,i})$ for i = 0 to L - 1 do Obtain $d_{2,i}$ from RPAU_i $r_{2,i} \leftarrow \texttt{Coeff.Reduce}(d_{2,i}, q_j)$ $\tilde{t} \leftarrow \operatorname{NTT}(r_{2,i})$ $c_{0,i}'' \gets c_{0,i}'' + \mathtt{KSK}_{0,i} \star \tilde{t}$ $c_{1,i}'' \leftarrow c_{1,i}'' + \texttt{KSK}_{1,i} \star \tilde{t}$ end for $(d_{0,i}, d_{1,i}) \leftarrow |c'' \cdot p^{-1}|$

Homomorphic multiplication & key-switching. (The most expensive operation) Parallel execution of instructions



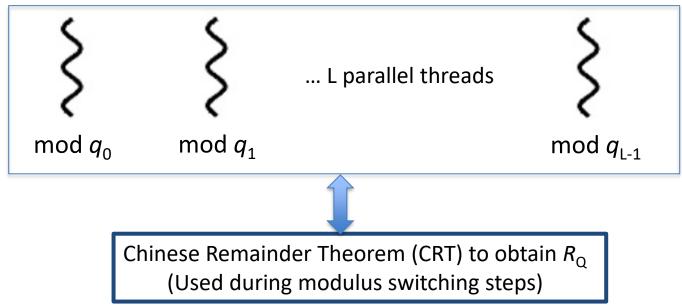
This reduces 40% cycle count

Placement of RPAUs

CRT requires combining the residues.

 \rightarrow Therefore, RPAUs need to communicate with each other

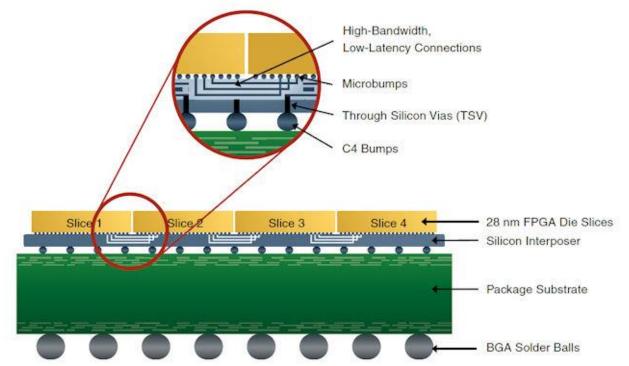
How to interconnect the RPAUs in large 3D FPGAs?



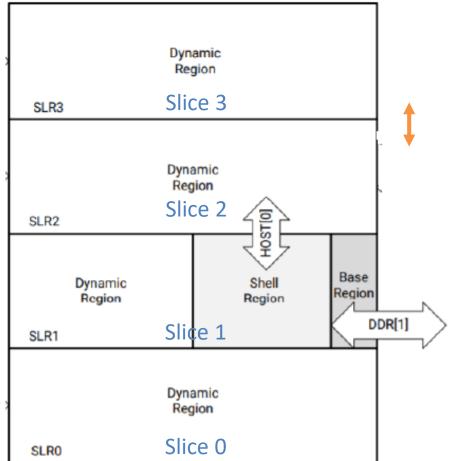
Large SLR FPGA

Large FPGAs are multi-die

- > The FPGA is split into four SLRs.
- Connected by a limited number of wires.



Large SLR FPGA – top view

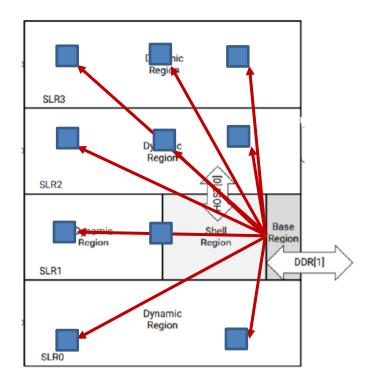


There are a limited number of interconnects.

Large design cannot be spread arbitrarily across SLRs.

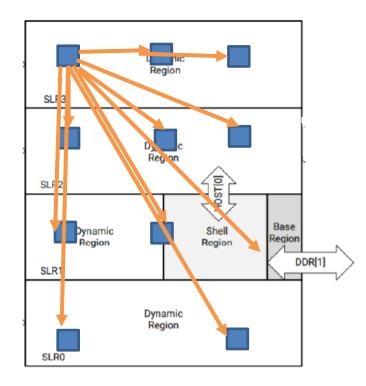
Xilinx Alveo U250 FPGA. This FPGA is 1000x larger than the FPGA used in this course.

- FPGA Constraints
 - > The FPGA is split into four SLRs.
 - Connected by a limited number of wires.
- Some operations require exchanging the residue polynomials between RPAUs
- Naïve solution: A "star-like" network



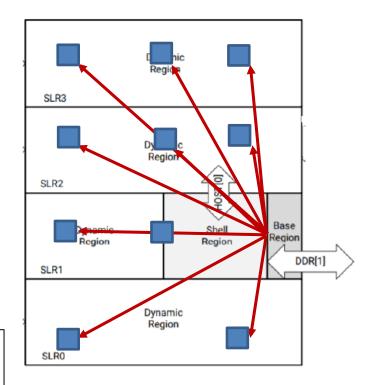
- FPGA Constraints
 - > The FPGA is split into four SLRs.
 - Connected by a limited number of wires.
- Some operations require exchanging the residue polynomials between RPAUs
- Naïve solution: A "star-like" network

Each RPAU has its own connections



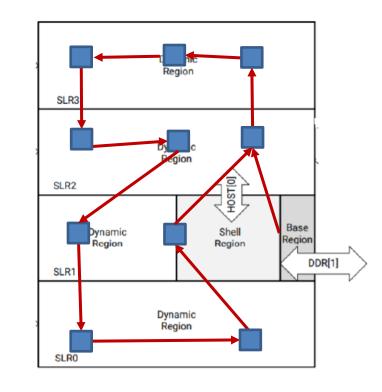
- FPGA Constraints
 - > The FPGA is split into four SLRs.
 - Connected by a limited number of wires.
- Some operations require exchanging the residue polynomials between RPAUs
- Naïve solution: A "star-like" network

- Complicates the routing
- Large number of nets crossing the SLRs
- Reduces the clock frequency to around 50 MHz or less

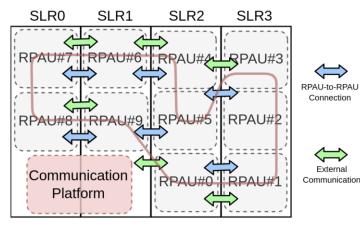


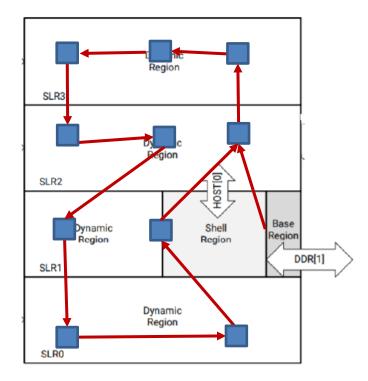
- FPGA Constraints
 - > The FPGA is split into four SLRs.
 - Connected by a limited number of wires.
- Some operations require exchanging the residue polynomials between RPAUs
- Solution: A "ring" interconnection of RPAUs

- Only two neighbour RPAUs are connected.
- Data sent to an RPAU through a chain of RPAUs.
- No additional computation overhead

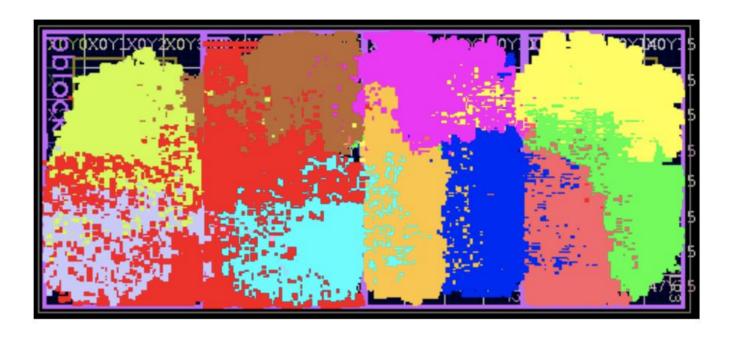


- FPGA Constraints
 - > The FPGA is split into four SLRs.
 - Connected by a limited number of wires.
- Some operations require exchanging the residue polynomials between RPAUs
- Placement of 10 RPAUs using "ring" interconnect





Floorplan of the design



Full system overview

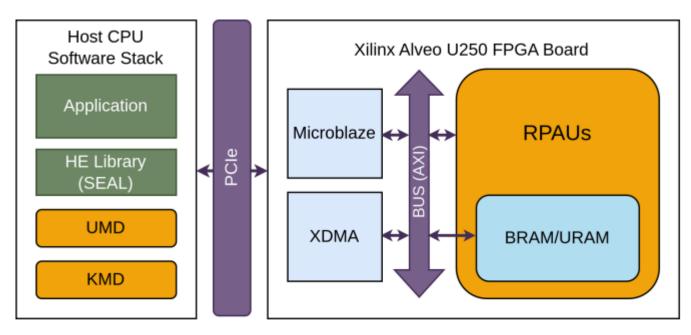
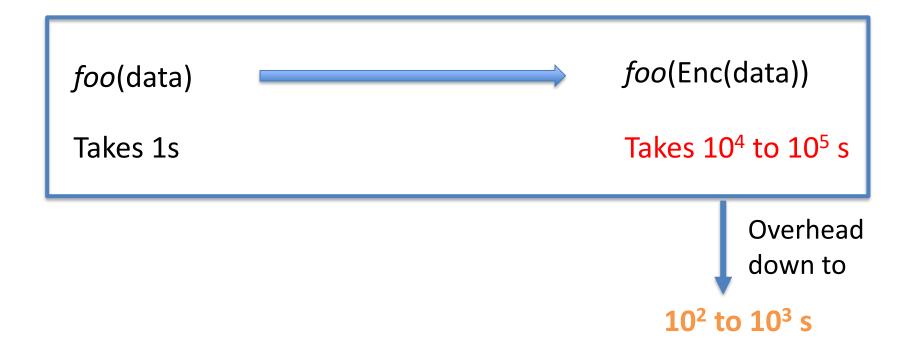


Figure 8: CPU-FPGA interface and software stack

FPGA is used as an accelerator card of a server. HW/SW codesign is used to run applications.

FPGA Acceleration results



Our Group's research: Open Problems in FHE

- 1. How to make hardware accelerators for larger parameter sets?
- 2. How to support different parameters?
- 3. How to support different FHE schemes?
- 4. How to implement FHE Bootstrapping?
- 5. From FPGA to ASIC accelerators
 - More parallel processing
 - Custom memory
 - Higher clock frequency and lower power consumption