
Sujoy Sinha Roy
sujoy.sinharoy@iaik.tugraz.at

Hardware Challenges in Homomorphic
Encryption

mailto:sujoy.sinharoy@iaik.tugraz.at

Privacy-Preserving Outsourcing of Computation
data

User wants to compute foo(data) in the cloud without loosing privacy.

foo()

Diabetic Retinopathy [Chao et al., 2019]

An encryption scheme Enc(· , ·) is homomorphic for an operation

☐ on the message space iff

Enc(m1☐m2 , kE) = Enc(m1 , kE) ○ Enc(m2 , kE)

with ○ operation on the ciphertext.

• If ☐ = + then Enc(·, ·) is additively homomorphic.

• If ☐ = × then Enc(·, ·) is multiplicatively homomorphic.

Definition: Homomorphic Encryption Scheme

• You have encryption of two messages m1 and m2 where

c1 = m1
e mod N

c2 = m2
e mod N

• By multiplying c1 and c2 you get

c3 = c1 · c2 = (m1 · m2)e mod N

• Hence, c3 is encryption of m1 · m2

Example: Textbook RSA is multiplicatively homomorphic

An encryption scheme Enc(· , ·) is homomorphic for an operation

☐ on the message space iff

Enc(m1☐m2 , kE) = Enc(m1 , kE) ○ Enc(m2 , kE)

with ○ operation on the ciphertext.

• If ☐ = + then Enc(·, ·) is additively homomorphic.

• If ☐ = × then Enc(·, ·) is multiplicatively homomorphic.

Fully Homomorphic Encryption (FHE)

An encryption scheme is called Fully Homomorphic Encryption (FHE)
when it supports both + and × on ciphertexts.

Recap -- Ring LWE Public-Key Encryption (PKE)

x +Gen(a)

Gen(s) Gen(e)

a
s e

b = a.s + e

Public Key (pk): (a,b)
Secret Key (sk): (s)

❑Key Generation:
❑Output: public key (pk), secret key (sk)

(Ring LWE
sample)

V. Lyubashevsky, C. Peikert, and O. Regev. "On Ideal Lattices and Learning with Errors Over Rings". IACR ePrint 2012/230.

Arithmetic operations are performed in a polynomial ring Rq

x +a

s’ e’

u = a.s’ + e’

x +b +

Enc(m)

v = b.s’ + e’’ + Enc(m)

(1, 0, 1, 0, . . .)

(q/2, 0, q/2, 0)

(Ring-LWE sample 1)

(Ring-LWE sample 2)

❑Encryption:
❑ Input: pk = (a,b), message m
❑Output: ct = (u,v)

m

Encodes’ e’’ Multiplication by q/2

Recap -- Ring LWE Public-Key Encryption (PKE)

x -u

s v

m’ = Enc(m) + esmall
Decode

(Erroneous Message Poly)

m

❑Decryption:
❑ Input: ct = (u, v), sk = s
❑Output: m after decoding

0 q/2

01

v – u.s = m’= Enc(m) + (e.s’ + e’’ + e’.s)
= Enc(m) + esmall

Recap -- Ring LWE Public-Key Encryption (PKE)

Select most significant bit of each coefficient as the message bits

q/4

3q/4

Ring-LWE PKE – Written with different symbols
Secret key: polynomial s
Public-key: polynomials (p0, p1)
Plaintext modulus: 2
Ciphertext modulus: q
Scale factor: ∆ = q/2

e0, e1, u error();
ct0 = p0 · u + e1 + ∆ · m
ct1 = p1 · u + e2

Encryption Decryption

ct0 + ct1·s
∆

mod t

Polynomials are in blue
Scalars are in red

Ring-LWE PKE shows Homomorphism

e0, e1, u error();
ct0 = p0 · u + e1 + ∆ · m
ct1 = p1 · u + e2

Encryption Decryption

ct0 + ct1·s

∆
mod t

Now consider two ciphertexts CtA = {ctA0,ctA1} and CtB = {ctB0,ctB1}

eA0, eA1, uA error();
ctA0 = p0 · uA + eA1 + ∆ · mA

ctA1 = p1 · uA + eA2

eB0, eB1, uB error();
ctB0 = p0 · uB + eB1 + ∆ · mB

ctB1 = p1 · uB + eB2

Ring-LWE PKE: Additive Homomorphism

e0, e1, u error();
ct0 = p0 · u + e1 + ∆ · m
ct1 = p1 · u + e2

Encryption Decryption

ct0 + ct1·s

∆
mod t

Now consider two ciphertexts CtA = {ctA0,ctA1} and CtB = {ctB0,ctB1}

eA0, eA1, uA error();
ctA0 = p0 · uA + eA1 + ∆ · mA

ctA1 = p1 · uA + eA2

eB0, eB1, uB error();
ctB0 = p0 · uB + eB1 + ∆ · mB

ctB1 = p1 · uB + eB2

ctC0 = p0 · (uA+uB) + (eA1+ eB1) + ∆ · (mA + mB)
ctC1 = p1 · (uA+uB) + (eA1+ eB1)

Ring-LWE PKE: Multiplicative Homomorphism

e0, e1, u error();
ct0 = p0 · u + e1 + ∆ · m
ct1 = p1 · u + e2

Encryption Decryption

ct0 + ct1·s

∆
mod t

Now consider two ciphertexts CtA = {ctA0,ctA1} and CtB = {ctB0,ctB1}

eA0, eA1, uA error();
ctA0 = p0 · uA + eA1 + ∆ · mA

ctA1 = p1 · uA + eA2

eB0, eB1, uB error();
ctB0 = p0 · uB + eB1 + ∆ · mB

ctB1 = p1 · uB + eB2

Polynomial multiplication
ctA0 * ctB0→ (noisy crap) + ∆2 · (mA × mB)

Ring-LWE PKE: Multiplicative Homomorphism

e0, e1, u error();
ct0 = p0 · u + e1 + ∆ · m
ct1 = p1 · u + e2

Encryption Decryption

ct0 + ct1·s

∆
mod t

Now consider two ciphertexts CtA = {ctA0,ctA1} and CtB = {ctB0,ctB1}

eA0, eA1, uA error();
ctA0 = p0 · uA + eA1 + ∆ · mA

ctA1 = p1 · uA + eA2

eB0, eB1, uB error();
ctB0 = p0 · uB + eB1 + ∆ · mB

ctB1 = p1 · uB + eB2

Polynomial multiplication
ctA0 * ctB0→ (noisy crap) + ∆2 · (mA × mB)

After dividing the expression by ∆ we get:
(noisy crap)/∆ + ∆ · (mA × mB)

Ring-LWE PKE: Multiplicative Homomorphism

e0, e1, u error();
ct0 = p0 · u + e1 + ∆ · m
ct1 = p1 · u + e2

Encryption Decryption

ct0 + ct1·s

∆
mod t

Now consider two ciphertexts CtA = {ctA0,ctA1} and CtB = {ctB0,ctB1}

eA0, eA1, uA error();
ctA0 = p0 · uA + eA1 + ∆ · mA

ctA1 = p1 · uA + eA2

eB0, eB1, uB error();
ctB0 = p0 · uB + eB1 + ∆ · mB

ctB1 = p1 · uB + eB2

Polynomial multiplication
ctA0 * ctB0→ (noisy crap) + ∆2 · (mA × mB)

After dividing the expression by ∆ we get:
(noisy crap)/∆ + ∆ · (mA × mB)

This looks like
an encryption of
(mA × mB)

Ring-LWE PKE: Multiplicative Homomorphism

e0, e1, u error();
ct0 = p0 · u + e1 + ∆ · m
ct1 = p1 · u + e2

Encryption Decryption

ct0 + ct1·s

∆
mod t

Now consider two ciphertexts CtA = {ctA0,ctA1} and CtB = {ctB0,ctB1}

eA0, eA1, uA error();
ctA0 = p0 · uA + eA1 + ∆ · mA

ctA1 = p1 · uA + eA2

eB0, eB1, uB error();
ctB0 = p0 · uB + eB1 + ∆ · mB

ctB1 = p1 · uB + eB2

Polynomial multiplication
ctA0 * ctB0→ (noisy crap) + ∆2 · (mA × mB)

After dividing the expression by ∆ we get:
(noisy crap)/∆ + ∆ · (mA × mB)

That is the basic idea
only.

Actual Mult is a lot
more complex!

The Biggest Problem in FHE

foo(data) foo(Enc(data))

Takes 1s Takes 104 to 105 s

0

50

100

150

200

250

300

350

400

450

500

0 2000 4000 6000 8000 10000 12000 14000 16000 18000

Si
ze

 o
f

co
ef

fi
ci

en
t

Number of coefficients in polynomial

Parameters for PQC and FHE

FHE

PQC

Increases with
complexity of
application.

Like Public-key encryption,
FHE does lots of polynomial arithmetic.

How to design a hardware accelerator for FHE?

What makes implementation of FHE very challenging?

• Lots of polynomial arithmetic operations

– Large degree polynomial arithmetic

– Long integer arithmetic

• Big operands

– Ciphertexts could be several MBs

• Memory management in HW accelerators

– On-Chip memory is limited

– Off-Chip data transfer is very slow

What makes implementation of FHE very challenging?

• Lots of polynomial arithmetic operations

– Large degree polynomial arithmetic

– Long integer arithmetic

• Big operands

– Ciphertexts could be several MBs

• Memory management in HW accelerators

– On-Chip memory is limited

– Off-Chip data transfer is very slow

This problem is solved using CRT

Dealing with long-int coefficients using RNS

We can take a modulus q = ∏qi where qi are coprime.

Then we can work with Residue Number System (RNS).

Arithmetic mod q

Arithmetic mod q0

Arithmetic mod q1

…
Arithmetic mod qL

Result mod qRNS arithmetic
• Small coefficients
• Parallel computation

L

0

Chinese
Remainder
Theorem
(CRT)

What makes implementation of FHE very challenging?

• Lots of polynomial arithmetic operations

– Large degree polynomial arithmetic

– Long integer arithmetic

• Big operands

– Ciphertexts could be several MBs

• Memory management in HW accelerators

– On-Chip memory is limited

– Off-Chip data transfer is very slow

• Schoolbook multiplication: O(n2)

• Karatsuba multiplication: O(n1.585)

• Toom-Cook (generalization of Karatsuba)

• Fast Fourier Transform (FFT) multiplication: O(n log n)

Which one is the best choice?

How to multiply two very large polynomials?
23

• Schoolbook multiplication: O(n2)

• Karatsuba multiplication: O(n1.585)

• Toom-Cook (generalization of Karatsuba)

• Fast Fourier Transform (FFT) multiplication: O(n log n)

Which one is the best choice?

How to multiply two very large polynomials?
24

Asymptotic complexity plays its role.

NTT-based Polynomial Multiplication

C(x) =
A(x)*B(x)

FFT
O(n log n)

FFT
O(n log n)

Dyadic
multiplication

O(n)

Inv-FFT
O(n log n)

B(x)

A(x) NTT
O(n log n)

NTT
O(n log n)

Dyadic
multiplication

O(n)

Inv-NTT
O(n log n)

B(x)

A(x)

NTT or Number Theoretic Transform

Let’s consider an application example.

Polynomial size n = 215

Log(q) = 60

A[0]

A[1]

A[2]

A[3]

A[n-1]

A[n-2]

Simplified NTT loops

for(m=2; m<=n; m=2m){

for(j=0; j<=m/2-1; j++){

for(k=0; j<n; k=k+m){

index = f(m, j, k);

Butterfly(A[index],A[index+m/2]);

}

}

}

NTT and of a polynomial A[]

A[0]

A[1]

A[2]

A[3]

A[n-1]

A[n-2]

Simplified NTT loops

for(m=2; m<=n; m=2m){

for(j=0; j<=m/2-1; j++){

for(k=0; j<n; k=k+m){

index = f(m, j, k);

Butterfly(A[index],A[index+m/2]);

}

}

}

NTT and Memory access

NTT starts with m=2
Butterfly(A[0], A[1])

A[0]

A[1]

A[2]

A[3]

A[n-1]

A[n-2]

Simplified NTT loops

for(m=2; m<=n; m=2m){

for(j=0; j<=m/2-1; j++){

for(k=0; j<n; k=k+m){

index = f(m, j, k);

Butterfly(A[index],A[index+m/2]);

}

}

}

NTT and Memory access

… with m=2
Butterfly(A[2], A[3])

A[0]

A[1]

A[2]

A[3]

A[n-1]

A[n-2]

Simplified NTT loops

for(m=2; m<=n; m=2m){

for(j=0; j<=m/2-1; j++){

for(k=0; j<n; k=k+m){

index = f(m, j, k);

Butterfly(A[index],A[index+m/2]);

}

}

}

NTT and Memory access

… with m=2, finally
Butterfly(A[n-2], A[n-1])

A[0]

A[1]

A[2]

A[3]

A[n-1]

A[n-2]

Simplified NTT loops

for(m=2; m<=n; m=2m){

for(j=0; j<=m/2-1; j++){

for(k=0; j<n; k=k+m){

index = f(m, j, k);

Butterfly(A[index],A[index+m/2]);

}

}

}

NTT and Memory access

Next, m increments to m=4.
Butterfly(A[0], A[2]), Butterfly(A[4], A[6]) …

A[0]

A[1]

A[2]

A[3]

A[n-1]

A[n-2]

Simplified NTT loops

for(m=2; m<=n; m=2m){

for(j=0; j<=m/2-1; j++){

for(k=0; j<n; k=k+m){

index = f(m, j, k);

Butterfly(A[index],A[index+m/2]);

}

}

}

NTT and Memory access

Next, m increments to m=4.
Butterfly(A[1], A[3]), Butterfly(A[5], A[7]) …

Can we speedup polynomial multiplication using several
NTT cores in parallel?

Answer: Yes

Can we speedup polynomial multiplication using several
NTT cores in parallel?

Answer: Yes

Is parallel NTT easy to implement?

Answer: Complexity of implementation increases with number of cores

BRAM
Or

SRAM

Parallel NTT
Challenge: Port limitation in BRAM or SRAM

Problem:
• One BRAM has only two ports.
• Each NTT core needs two ports

BRAM
Or

SRAM

Parallel NTT
Challenge: Port limitation in BRAM or SRAM

Problem:
• One BRAM has only two ports.
• Each NTT core needs two ports

To get parallel NTT, designers instantiate parallel BRAMs in parallel.

BRAM
Or

SRAM

Parallel NTT
Memory access conflict
• Two or more cores try to read/write the same BRAM element.

But BRAM has a limited number of ports to satisfy one core.

Two cores are trying to access
the same BRAM.

Parallel NTT
Memory access conflict
• Two or more cores try to read/write the same BRAM element.

But BRAM has a limited number of ports to satisfy one core.

Two cores are trying to access
the same BRAM.

Solution: Cores generate
addresses such that they
are mutually exclusive.

Parallel NTT
Long data routing
• Core requires data from distant BRAM memory

- Long routing of data wires → slow clock frequency

Core is reading data
from far memory.

Parallel NTT
Long data routing
• Core requires data from distant BRAM memory

- Long routing of data wires → slow clock frequency

Core is reading data
from far memory.

Solution: There is no easy solution
to this problem.
Research papers propose localizing
read or write (not both)

Mert et al. “Medha: Microcoded Hardware Accelerator for computing on Encrypted Data”. TCHES 2023

BRAMs

NTT
Cores

Wires to write coefficients
to BRAMs. They are
pipelined using layers of reg.

This paper localizes
the read operation.

BRAM is exclusively
read by only one
core.

Next, FHE accelerator

Coefficient arithmetic

Polynomial arithmetic

Crypto
(FHE)

42

High level computation flow

Ciphertexts are polynomials in RQ = ZQ/<Xn + 1>
E.g., log(Q) = 500, n = 215

Let Q = ∏qi where qi are NTT primes.
Apply Residue Number System (RNS)

mod q0 mod q1 mod qL-1

… L parallel threads

Each thread perform arithmetic in residue polynomial ring Rqi

High level computation flow

Ciphertexts are polynomials in RQ = ZQ/<Xn + 1>
E.g., log(Q) = 500, n = 215

Let Q = ∏qi where qi are NTT primes.
Apply Residue Number System (RNS)

mod q0 mod q1 mod qL-1

… L parallel threads

NTTs, INTTs,
Coeff-wise add,
sub, mult, etc.

High level computation flow

Ciphertexts are polynomials in RQ = ZQ/<Xn + 1>
E.g., log(Q) = 500, n = 215

Let Q = ∏qi where qi are NTT primes.
Apply Residue Number System (RNS)

mod q0 mod q1 mod qL-1

… L parallel threads

Chinese Remainder Theorem (CRT) to obtain RQ

(Used during modulus switching steps)

High level accelerator architecture

mod q0 mod q1 mod qL-1

… L parallel threads Data flow
diagram

module
RPAU0()

module
RPAU1()

module
RPAUL-1()

Arch. block
diagram

… L parallel modules

*RPAU stands for Residue Polynomial Arithmetic Unit

RPAU ()

module
RPAU ()

Each RPAU() module must support arithmetic modulo q_i
• NTT
• INTT
• Modular reduction by q_i
• Coefficient-wise modular addition
• Coefficient-wise modular multiplication

RPAU ()

Example RPAU. It uses 16 NTT butterfly cores and 4 coefficient-wise (dyadic) arithmetic cores.
Polynomials are stored in ‘Memory’ made of BRAMs.

Mert et al. “Medha: Microcoded Hardware Accelerator for computing on Encrypted Data”. TCHES 2023

Instruction Parallelism in RPAU ()

Homomorphic multiplication &
key-switching.
(The most expensive operation)

Parallel execution of instructions

This reduces 40% cycle count

Placement of RPAUs

mod q0 mod q1 mod qL-1

… L parallel threads

Chinese Remainder Theorem (CRT) to obtain RQ

(Used during modulus switching steps)

CRT requires combining the residues.
→ Therefore, RPAUs need to communicate with each other

How to interconnect the RPAUs in large 3D FPGAs?

Large FPGAs are multi-die
➢ The FPGA is split into four SLRs.
➢ Connected by a limited number of wires.

Large SLR FPGA

Large SLR FPGA – top view

Slice 0

Slice 1

Slice 2

Slice 3 There are a limited number
of interconnects.

Large design cannot be spread
arbitrarily across SLRs.

Xilinx Alveo U250 FPGA. This FPGA is 1000x
larger than the FPGA used in this course.

Placement-friendly interconnection of RPAUs

• FPGA Constraints
➢ The FPGA is split into four SLRs.
➢ Connected by a limited number of wires.

• Some operations require exchanging the residue
polynomials between RPAUs

• Naïve solution: A ”star-like” network

One RPAU

Placement-friendly interconnection of RPAUs

• FPGA Constraints
➢ The FPGA is split into four SLRs.
➢ Connected by a limited number of wires.

• Some operations require exchanging the residue
polynomials between RPAUs

• Naïve solution: A ”star-like” network

One RPAU

Each RPAU has its own connections

• FPGA Constraints
➢ The FPGA is split into four SLRs.
➢ Connected by a limited number of wires.

• Some operations require exchanging the residue
polynomials between RPAUs

• Naïve solution: A ”star-like” network

• Complicates the routing
• Large number of nets crossing the SLRs
• Reduces the clock frequency to around 50 MHz or less

Placement-friendly interconnection of RPAUs

• FPGA Constraints
➢ The FPGA is split into four SLRs.
➢ Connected by a limited number of wires.

• Some operations require exchanging the residue
polynomials between RPAUs

• Solution: A ”ring” interconnection of RPAUs

• Only two neighbour RPAUs are connected.
• Data sent to an RPAU through a chain of RPAUs.
• No additional computation overhead

Placement-friendly interconnection of RPAUs

Mert et al. “Medha: Microcoded Hardware Accelerator for computing on Encrypted Data”. TCHES 2023

• FPGA Constraints
➢ The FPGA is split into four SLRs.
➢ Connected by a limited number of wires.

• Some operations require exchanging the residue
polynomials between RPAUs

• Placement of 10 RPAUs using “ring” interconnect

Placement-friendly interconnection of RPAUs

Floorplan of the design

Full system overview

Mert et al. “Medha: Microcoded Hardware Accelerator for computing on Encrypted Data”. TCHES 2023

FPGA is used as an accelerator card of a server. HW/SW codesign is
used to run applications.

FPGA Acceleration results

foo(data) foo(Enc(data))

Takes 1s Takes 104 to 105 s

Overhead
down to

102 to 103 s

Mert et al. “Medha: Microcoded Hardware Accelerator for computing on Encrypted Data”. TCHES 2023

Our Group’s research: Open Problems in FHE
1. How to make hardware accelerators for larger parameter sets?

2. How to support different parameters?

3. How to support different FHE schemes?

4. How to implement FHE Bootstrapping?

5. From FPGA to ASIC accelerators
- More parallel processing
- Custom memory
- Higher clock frequency and lower power consumption

