AIKfTU

i0S Application Security

Mobile Security 2023

Florian Draschbacher
florian.draschbacher@iaik.tugraz.at

Some slides based on material by Johannes Feichtner

Assignments

e Thank you for your submissions for assignment 1!
— Detailed feedback in a few days

e Start planning assignment 2 now!
e Any questions?

— Discord channel for anything relevant for others as well
— Send me an email

Outline

e App Internals

— Application Format
— Sandbox
— Code Signing

e App Distribution

e App-Level Security on iOS

e i0OS Malware & Jailbreaking

e App Analysis on iOS

APP STALKING —

Dozens of i0S apps surreptitiously share
user location data with tracking firms

Applications don't mention that they're selling your precise location to third
parties.

SEAN GALLAGHER - 9/10/2018, 9:11 PM

Source:

What?

Location data of popular apps leaked to
12 known monetarization firms

e Bluetooth LE Beacon Data
e GPS Longitude and Latitude

e Wi-Fi SSID (Network Name) and
BSSID (Network MAC Address)

e Further device data

— Accelerometer, Cell network
MCC/MNC, Battery Charge % and
status (Battery or charged via USB)

Problem?

g Users agree on sharing their location for

different purposes, e.g. ,Location based

N social networking for meeting people

nearby” IAIKggfaTU

https://goo.gl/FjCesH

Application Security

Even on a perfectly hardened platform
e Malicious applications may compromise sensitive data
e Insecure applications can open doors to attackers!

i0OS platform limits potential attack surface to a minimum
e Code Signing
e Sandboxing

App developers need to
e Submit applications to Apple for review before publishing
e Follow security guidelines

Application Security

From Apple’s Developer Documentation:

“The most important thing to understand about security is that it is not a bullet point item.
You cannot bolt it on at the end of the development process. You must consciously design
security into your app or service from the very beginning, and make it a conscious part of the

entire process from design through implementation, testing, and release.”

The App's responsibility for securing data

Your app

Trusted data
Check validity and

: read data safely
Potentially

untrusted data I
and services

Authenticate recipient and (1]
use secure channel

C) ‘
. AN y

I ¥ boundary of trust

Source: apple.com IAI K T

Grazm

https://developer.apple.com/library/archive/documentation/Security/Conceptual/Security_Overview/Introduction/Introduction.html

App Internals

App Files

e Distributed in (“iOS App Store Package”)
e ZIP archive with all code + resources

$ unzip SuperPassword.ipa -d mobsecdemo
$ 1s -R mobsecdemo/

/Payload/SuperPassword.app/ App itself + static resources

-> SuperPasswonrd Binary executable (ARM-compiled code)

-> Info.plist Bundle ID, version number, app name to display

-> MainWindow.nib Default interface to load when app is started

-> Settings.bundle App-specific preferences for system settings

-> _CodeSignature Signatures of resource files

-> further resources Language files, images, sounds, more GUI layouts (nib)
/iTunesArtwork 512x512 pixel PNG image -> app icon
/iTunesMetadata.plist Developer name + ID, bundle identifier,

copyright information, etc.

[V an VN BN L I

Grazm

FairPlay DRM e

e The executable binary inside the IPA file is DRM-protected
— Encrypted using Apple’s FairPlay DRM scheme

e At runtime, it is transparenly decrypted by the kernel
— Apple Protect Pager: Transparenly decrypts file when mapping into memory
— FairPlay DRM system is heavily obfuscated and only partly reverse-engineered

e Encryption is carried out by Apple, and only affects App Store apps (*)
— (*) TestFlight (Beta-Test) distribution is also affected

e DRM can be removed by using a Jailbroken device
— Dump the application’s memory at runtime

Sources: J. Levin: *0OS Internals’, Junzhi Lu et al. "Play with Fire: Uncover FairPlay DRM and Obfuscation for Fun and Profit’

http://newosxbook.com/index.php
https://github.com/pwn0rz/fairplay_research/blob/master/slides/bh20-arsenal-fairplay.pdf

TEXT Segment

i0S Executables G
e Binaries are in Mach-0 format (once decrypted)

e Contains segments of one or multiple sections __text Section
— Header Executable Code
= Architecture
__DATA Segment B:28
= Load Commands .
e VVirtual Memory Layout __objc_
e Libraries Runtime Info
e Encryption
— Data __DATA_CONST B9
= Executable code __const

» Read / write data Read-Only Data

= Objective C runtime information
= Code signature __LINKEDIT Segment SLEZN

Dyld Information .
Code Signature

Source: J. Levin: *0S Internals’, IAIK

TU

Grazm

http://newosxbook.com/index.php

App Installation

e The application and its data are spread across multiple file system locations

— /private/var/mobile/Containers/Bundle/Application/<APP UUID>/
= Extracted IPA contents

— /private/var/mobile/Containers/Data/Application/<CONTAINER UUID>/
= User-generated app data. Container UUID changes with every new launch.

= Subfolder ,Library“: Cookies, caches, preferences, configuration files (plist)
= Subfolder ,tmp*“: Temp files for current app launch only (not persisted)
= Subfolder ,Documents”: Visible through iTunes File Sharing and Files app (if enabled)

— /private/var/mobile/Containers/Shared/AppGroup/<APP UUID>/
= To share with other apps & extensions of same app group

Source: J. Levin: *0S Internals’, IAIK T

Grazm

http://newosxbook.com/index.php

Application
Sandbox

IAIKgfaTY

Application Sandbox

e Isolate apps from each other and the system
— Restricts resource access and system integration of third-party applications
— App must hold Entitlements for advanced interactions with system
— Apps may request access to some system-wide data by asking user permission

e Limits file system access to app’s container
— /var/mobile/Containers

e Disallows most system calls
— Prevent sandbox escape

Source: J. Levin: *0S Internals’ IAIK#EU
razm

http://newosxbook.com/index.php

Recall: Mandatory Access Control (MACF)

e Various hooks scattered throughout syscall implementations in kernel

e Hooks call out to Policy Modules for checking if operation permitted

e Foundation for central iOS security features
— Code Signing Policy Module: AppleMobileFilelntegrity.kext
— Sandbox Policy Module: Sandbox.kext

Source: J. Levin: *0S Internals’

Picture: Gooale / Apache 2.0

https://fonts.google.com/icons
https://www.apache.org/licenses/LICENSE-2.0.html
http://newosxbook.com/index.php

Sandbox.kext

MACF Policy Module that implements the application sandbox

e Can be configured through Profiles
— Compiled from proprietary Sandbox Profile Language (SBPL)
— Specifies what is allowed and what not
— i0S only supports profiles hard-coded into the kernel extension

— Dynamically extended
= Depending on user-granted access (e.g. Media Library)
= Depending on app entitlements

e Profiles enforced in hooks of > 100 system calls

Source: J. Levin: *0S Internals’

http://newosxbook.com/index.php

Code Signing

IAIKg Ty

Code Signing

All code executed on iOS must be signed

e Protects the integrity of applications

e Ensures that Apple had a chance to screen developer and/or application
e Signature also contains and protects app entitlements

e Exceptions for some Apple apps

— Holding a special entitlement (discussed later)
— E.g. Javascript JIT in Safari

e Exceptions for apps controlled by a debugger
— Development!

Source: J. Levin: *0S Internals’,

http://newosxbook.com/index.php

Entitlements

e Define degree to which application can integrate and interact with system
e Enforced by kernel and system before sensitive operations
e Granted by Apple to the developer for a specific app

e More than 3000 entitlements defined throughout subsystems on iOS 15
— Only a fraction are officially documented and allowed to normal third-party apps

THEVERGE TECHSPOT 2 0Q

QT®5Mac v D f : o Q

TECH SCIENCE MORE TRENDING FEATURES REVIEWS THEBEST DOWNLOADS VIDEO

Exclusives Store Guides ~ Mac v iPhone v D

JUNE 25, 2021

Apps can request access to more
RAM with iOS 15 entitlement,
exceeding normal system memory
limits

Benjamin Mayo - Jun. 25th 2021 313 am PT W

Source: 9toSmac.com

Sources: J. Levin: *0S Internals’, newosxbook.com

Apple now lets some video
streaming apps bypass the
App Store cut

Amazon Prime Video was the latest to enter into
the program earlier today

By Nick Statt | @nickstatt | Apr 1, 2020, 7:29pm

Source: theverge.com

Apple granted Uber's iOS app an
entitlement that allowed it to record
users' screens

The feature is now being removed

By Rob Thubron October 6, 2017, 11:24 AM

Source: techspot.com

IAIK T

Grazm

http://newosxbook.com/index.php
http://newosxbook.com/ent.jl?osVer=iOS15.2&p=possess
https://www.techspot.com/news/71289-apple-granted-uber-ios-app-entitlement-allowed-record.html
https://www.theverge.com/2020/4/1/21203630/apple-amazon-prime-video-ios-app-store-cut-exempt-program-deal
https://9to5mac.com/2021/06/25/apps-can-request-access-to-more-ram-with-ios-15-entitlement-exceeding-normal-system-memory-limits/

Code Signatures

e Two parts

— Application Seal: _CodeSignature/CodeResources: Hashes of all resources
— Embedded Signature: Actual code signature

The Embedded Signature
e Storedin LINKEDIT segment of the MACH-O binary
e Consists of Codesigning Blobs:
— Entitlements Blob: List of app’s entitlements
— Requirements Blob: Specify rules for validating the app signature

— Code Directory Blob: Hash of code pages, App Seal and Codesigning Blobs
— Signature Blob: Signs all these hashes

Sources: J. Levin: *0S Internals’, Umang Raghuvanshi: "A Deep Dive into 1I0S Code Sianing’ IAIKﬂ-I;rla.!-

http://newosxbook.com/index.php
https://blog.umangis.me/a-deep-dive-into-ios-code-signing/

Code Signatures

Code Signature forms a signed tree of hashes, rooted at Apple CA certificate

Code Page 1 cee Code Page n Info.plist CodeResources

Code Directory

Signature Blob
App Store Deployment

Apple iPhone OS Application Signing

Apple Root CA
PP IAIK T

Grazm

Code Signature Enforcement

But how is it implemented?

Before starting a process (in the exec system call)
e Kernel extracts the Code Signature from the binary
e Stores it in special Unified Buffer Cache

On page faults
e Handler checks whether page belongs to a code-signed object

e Requests MACF policies to validate the signature of the page
— AppleMobileFilelntegrity.kext!

Source: J. Levin: *0S Internals’

http://newosxbook.com/index.php

AppleMobileFilelntegrity.kext (AMFI)

e Basic validation of Code Signature format and hashes

e Check CodeDirectory Hash (CDHash) against Trust Cache
— Preinstalled system applications

e Third-party apps: pass to user-space amfid daemon
— Don't parse complex signature format in kernel

e Also hooks into mmap and mprotect system calls
— Ensure requested memory protections do not allow execution

Source: J. Levin: *0S Internals’

http://newosxbook.com/index.php

AMFI Userspace Daemon (amfid)

e Enforces rules from Requirements Blob

e Inspects certificate chain in the Signature Blob
— Complex PKI parsing

e Queries installed Provisioning Profiles
— To complete chain from Developer Certificate to Apple CA

e This is the weakest point in Code Signing Enforcement
— Most jailbreaks manipulate amfid to circumvent code signing

Source: J. Levin: *0S Internals’

http://newosxbook.com/index.php

Entitlements Vulnerability ¢escnicpaper)

e A vulnerability in iOS <13.5 enabled apps to gain arbitrary entitlements
e Exploited differences between XML parsers in kernel and user space

<?xml version="1.0" encoding="UTF-8"7>
<!DOCTYPE plist PUBLIC "-//Apple//DTD PLIST 1.0//EN" "http://www.apple.com/DTDs/PropertylList-1.0.dtd">
<plist version="1.0">

<dict>
<!—- these aren't the droids you're looking for ——> User Space (amfid):
<l———><l—>
<key>platform-application</key> No entitlements
<true/>
<key>com.apple.private.security.no-container</key> Kernel (AMElkext):
<true/>
:iizzjzsk_for_p1d—allow</key> « task_for_pid-allow: true
<l ——s « platform-application: true
</dict> « com.apple.private.security.no-container: true
</plist>

Source: blog.siguza.com IAIK T

Grazm

https://blog.siguza.net/psychicpaper/

App Distribution

Distribution Options

e Apple tightly restricts the possibilities for installing software on iOS
— Jailbroken devices: Code signing usually disabled

Distribution Developer Account Review Devices

App Store Paid (99S/yr) Yes All

TestFlight Paid (995/yr) Yes (if public beta test) Limited

Enterprise Enterprise (*) (2995/yr) No All that have Provisioning Profile
Development / Ad-Hoc Free No Limited, Preregistered

(*) Eligible only companies of more than 100 employees, for in-house distribution of proprietary software

Source: apple.com

IAIK T

Grazm

https://developer.apple.com/distribute/

Provisioning Profiles

e Apps that do not go through a review process cannot be signed by Apple
— Developers sign them using a Development Certificate issued by Apple

e How to restrict the power of this development certificate?
— Restrict it to certain application, devices, entitlements

e How?
— Provisioning Profiles

Source: J. Levin: *0S Internals’

http://newosxbook.com/index.php

Provisioning Profile

e Link between developer certificate and Apple CA
— Must be installed on the device (may be embedded in IPA)

— Only needed for development and enterprise distribution
= App Store or TestFlight distribution: Signed by Apple after review

e Contains:
— Application Identifier: Dev. Certificate can only sign specified app
— Device UDIDs: Profile may only be installed on specified devices
— Entitlement Restrictions: The entitlements a signed app may have at most
— Developer Certificate: The corresponding private part signs the application

e Signed and issued by Apple

Source: J. Levin: *0S Internals’ IAIK#EU
razm

http://newosxbook.com/index.php

Provisioning Profile (Crevmrenr) o= [rwomeer)

.7

[Code Page 1] cee [Code Page n] [Info.plist] [CodeResources]

e —m

Development or Enterprise
Deployment

N/

Code Directory

. S

A 2

Signature Blob

\ J

Developer
Certificate

Provisioning Profile

Apple Root CA

IAIK T

Grazm

Application Signing

App Store Distribution:

Apple issues Apple Apple signature
i Submission ' ,
Deployment Certificate Developer signs app through AppStore e Replaces developer App Store

signature
Connect J

Development Distribution:

Apple issues

. Install Provisionin .
Development Certificate & Developer signs app Certificate on Devi 3e Install App on Device
Provisioning Profile

Please note the key pair for the development and deployment certificates must be supplied by the developer in both cases
Signing an app involves using the private key for the development/deployment certificate.

IAIK T

Grazm

App Store ReView “On average, 50% of apps are reviewed in 24 hours

and over 90% are reviewed in 48 hours.”

Process: Source: apple.com
1. Developer uploads app

2. Enter queue for review (on re-upload: back to start)
3. After review

— Onreject: Notification with reason

— On success: App release

+ Quality control and nearly no evil apps
- Not possible to fix bugs / security issues quickly (2 expedited reviews / yr)

e Used to be a very opaque process
— Some details leaked during Apple vs Epic lawsuit

https://developer.apple.com/app-store/review/

App Review Process

Multiple steps E o
i 1wl [

e’

e Automated Static Analysis
— Analyse application binary

T

VORRTRE
L

Dynamic Analysis

e Automated Dynamic Analysis
— Detect runtime behavior using random user input

e Manual Reviews
— Manually check for guideline violations

Source: Epic vs. Apple: Testimony of Trystan Kosmynka

Manual Analysis

Grazm

https://app.box.com/s/6b9wmjvr582c95uzma1136exumk6p989/file/808222509408

App Rewew Process: Dynamic Analysis

@ PX-0335 (Redacte a) pdf

Display a menu

Dynamic Analysis

SPI Network
Crash Logs Memory
CPU File System Access
Battery Usage iCloud Usage
IDFA Usage canOpenURL
Link Analysis Text Analysis
Screenshot Recording AV Recording
Ul Testing Access Photos
Location Services Access Contacts
Access Microphone Access Bluetooth
Access Camera Access Health
Access HomeKit Access Motion & Fitness
Use Apple Pay Use IAP

Functionality® Safety® Diagnostics © User Experienc. Input

Details

File properties
Owine

Apple Epiclit
Uploader

Apple Epiclit
Created

7 May 2021, 03:51
Meodified

7 May 2021, 03:51

4.2 MB

stan Kosmynka

ople: Testimony of Tr

Source: Epic vs. A

https://app.box.com/s/6b9wmjvr582c95uzma1136exumk6p989/file/808238598087?sb=/details

App Review Process: Static Analysis

Static Signature

Screenshots Preview 1.0 Sta“c Signature
|IAP Description ‘

Size Keywords
Name Localizations
What's New Static Analysis
Entitlements RDiff
Assembly Analysis Strings

Source: Epic vs. Apple: Testimony of Trystan Kosmynka

https://app.box.com/s/6b9wmjvr582c95uzma1136exumk6p989/file/808238598087?sb=/details

App Review Process: Manual Analysis

e More than 500 people review 100,000 apps per week

e Process is assisted by automation
— E.g. automatically identifying changes in app updates

e Decisions regarding high-profile apps may be overruled by ERB

— Executive Review Board
= Phil Schiller, VP of Marketing at Apple

Sources: 9tobmac.com, cnbc.com

https://9to5mac.com/2021/05/07/app-store-review-process-has-over-500-human-experts-less-than-1-of-rejections-are-appealed/
https://www.cnbc.com/2019/06/21/how-apples-app-review-process-for-the-app-store-works.html

I0S Privacy Features

{ Privacy App Privacy Report

App Privacy Report records data and sensor access,
app and website network activity, and the most
frequently contacted domains. Learn more...

DATA & SENSOR ACCESS

Q(Photos

56 sec. ago - Contacts, Media Library and 1...

. Messages
1hr. ago - Contacts

New District Museum

5 hrs. ago - Camera and Location

GameDev Dojo

2 days ago - Location

Veggiscape

2 days ago - Location

Show All

These apps accessed your data or sensors in the
past 7 days

APP NETWORK ACTIVITY

ﬂ New District Museum

“ Trio Ceramics

D Veggiscape

Privacy Report

e i0OS dynamically analyses apps
— During runtime

e Developers are required to
disclose data processing

— Scope
— Purpose

e Developers not always honest

— Xiao et al: Lalaine: Measuring and Characterizing Non-
Compliance of Apple Privacy Labels, Usenix Security
2023

App Privacy Nutrition Labels

3219 ST ED
< Back B o @CH
App Privacy See Details

The developer, Roblox Corporation, indicated
that the app'’s privacy practices may include
handling of data as described below. For more
information, see the developer's privacy policy.

(P
“
Data Used to Track You

The following data may be used to track
you across apps and websites owned by
other companies:

. Purchases @ User Content

B8 Identifiers a8l Usage Data

®

Data Linked to You

The following data may be collected and
linked to your identity:

@ Purchases < Location

e Contact Info @ User Content
@ search History B8 [dentifiers
sl Usage Data ﬁ Diagnostics

Privacy practic = s mple, based

IAIK T

Grazm

App Distribution: Future

e Several ongoing lawsuits and initiatives
e Breaking Apple’'s uncompetitive control over app distribution

e Apple vs Epic
— USA: Apple must allow external IAP payment options

e EU: Digital Markets Act finalized in 2022
— Allow sideloading
— Alternate purchase methods

Sources: macrumors.com, techcrunch.com

https://www.macrumors.com/2022/03/17/eu-sideloading-bill-coming-soon/
https://techcrunch.com/2021/11/09/apple-ordered-to-comply-with-courts-decision-in-epic-games-case-over-in-app-payments/

= (@’ MacRumors

App Distribution: Future

i0S 17 to Support App Sideloading to Comply
With European Regulations

° App|e iS expected tO aIIOW Sideloading in iOS 17 Monday April 17, 2023 4:54 am PDT by Tim Hardwick
— Will be presented at WWDC in June i ion ks Foafad clile o bs LAt

Store, according to Bloomberg's Mark Gurman.

e Sideloading will require major changes to iOS
— Reworked security foundations 177
— What about code signing? i /
— What about entitlements and private APIs?
— How to ensure app integrity?

Otherwise known as sideloading, the change would
allow customers to download apps without needing to
use the App Store, which would mean developers
wouldn't need to pay Apple's 15 to 30 percent fees.

The European Union's Digital Markets Act (DMA), which
went into effect on November 1, 2022, requires
"gatekeeper” companies to open up their services and
platforms to other companies and developers.

Source: Macrumors.com IAIK T

Grazm

https://www.macrumors.com/2023/04/17/app-sideloading-support-coming-ios-17/

App-Level
Security

Location Services o

Location Services uses crowd-sourced Wi-Fi hotspot locations to determine your approximate

@ [J [J
I P e r m I s s I 0 n s location. About Location Services & Privacy...

App Store
e Users can grant certain permissions BusBahnBim

— Apps show permission dialog at runtime @ Camera . @

‘@l Maps
OBB Scotty
@ safari e
Siri O
e Workflow 09 Westher

— First APl access: Request user permission B weatrers

— Further API access:
Refer to saved permission state

e Can be revoked in app settings

@ FindMyiPad On

System Services

Note: Only way to remove internet access for app
- Turn off your WiFi / LTE connection...

IAIK T

Grazm

1I0S Permissions

e Apps do not directly (statically) request permissions
— Developers do not have to specify which they want to use
— Depending on use of sensitive APIs

e Example: App wants to access user’'s contacts

“Cluster” Would Like to
— App calls method from CNContactStore class Jiicccss Your Conaess
This allows Cluster to let you choose
— Since iOS 10: Apps must present description which friends to invite to shared

h Ibums.
how requested data is used Euatoabiis
— APl access blocked until permission granted / denied Don’t Allow

e Sensitive APIs
Contacts, Microphone, Calendar, Camera, Reminders, Photos, Health, Motion Activity & Fitness,
Speech Recognition, Location Services, Bluetooth Sharing, Media Library, Social Media Accounts

IAIK T

Grazm

i0S Cryptography APls

e CommonCrypto
— Low-level C library for symmetric encryption, message digests, KDF, HMAC

e CryptoKit

— High-level Swift library for asymmetric & symmetric crypto, MAC, digests

e Security Framework
— Low-level C library for cryptographically secure random numbers

e Network Framework
— Low-level Swift library for TLS (and TCP, UDP)

e URLSession API
— High-level ObjC/Swift library for HTTPS (and HTTP, FTP, ...)

Source: developer.apple.com

https://developer.apple.com/documentation/technologies

App Transport Security (ATS)

e Requires that all URLSession requests are made over HTTPS (instead of HTTP)
— And that the connection employs modern TLS standards

e Configurable in Info.plist dictionary
— Specify exceptions
= For specific domains
= For specific contents
— Exceptions must be justified for App Review!

Certificate Pinning or Self-Signed Certificates still relatively difficult!

Source: developer.apple.com ﬂ
IAIK 'Ic:g_

https://developer.apple.com/documentation/security/preventing_insecure_network_connections

I0S Malware &
Jailbreaking

IAIKgfaTY

Malware?

e Advanced protections
— Code Signing
— Sandbox

e Reduced attack surface - stripped down OS
— Lots of useful binaries missing, e.g. no /bin/sh - no ,shell” code ®
— Even if shell 2 no 1s, rm, ps, etc.
— With code execution, what could you do?

e Privilege separation
— Most processes run as user ,mobile”
= Mobile Safari, Mobile Mail, Springboard, etc
— Many resources require root privileges

IAIKggfaTU

Wirelurker Malware (2014)

e Maiyadi App Store
— 3rd Party Mac AppStore in China pgﬁ_lvofxﬁ;osin-e
— Hosts ,free” apps

Trojanize Mac
Application

User Downloads

e Code signatures can be disabled on macOS & Runs Mac App

Check for Updates

Communicate Mac App Drops &
with C2 Server Installs Files

Download i0S Monitor USB for Download New

1. maCOS infeCtlon Apps i0S Connections Code

2. App installed via cable on iPhone,
. . . Backup Specific i0S Device Exfiltrate Device
Slgned Wlth enterprlse app Store Cert i0S Apps Infection Information

(User has to trust Provisioning profile!)

Trojanize i0S Exfiltrate User
Apps Data

Source: paloaltonetworks.com

Source: paloaltonetworks.com |A|K T

Grazm

https://www.paloaltonetworks.com/content/dam/pan/en_US/assets/pdf/reports/Unit_42/unit42-wirelurker.pdf
https://www.paloaltonetworks.com/content/dam/pan/en_US/assets/pdf/reports/Unit_42/unit42-wirelurker.pdf

XcodeGhost (2015)

e Maliciously modified version of the Xcode compiler
e Added backdoors to apps during compilation
e Particularly wide-spread in Chinese applications

e Infected applications could be remotely controlled
— Steal device information
— Hijack opening of URLs

e Affected more than 128 million users
— According to Apple’s estimation

Source: paloaltonetworks.com

P
= (@MacRumors 2

'‘XcodeGhost' Malware Attack in

2015 Impacted 128 Million iOS
Users, According to Trial Documents

Friday May 7, 2021 1:55 pm PDT by Juli
Clover

Back in 2015, a malware-infected version
of Xcode began circulating in China, and
malware-ridden "XcodeGhost" apps made
their way into Apple's App Store and past
the App Store review team.

o j XcodeGhost

There were more than 50 known infected
iOS apps at the time, including major apps
like WeChat, NetEase, and Didi Taxi, with
up to 500 million iOS users potentially
impacted. It's been a long time since the
XcodeGhost attack, but Apple's trial with
Epic is surfacing new details.

Apple Studio Display Mac Studio iPh

Source: macrumors.com

IAIK T

Grazm

https://www.macrumors.com/2021/05/07/xcodeghost-malware-2015-128-million-ios-users/
https://unit42.paloaltonetworks.com/novel-malware-xcodeghost-modifies-xcode-infects-apple-ios-apps-and-hits-app-store/

Pegasus (2016-now)

e Spyware exploits zero-click vulnerabilities for essentially jailbreaking device
— Location tracking
— Application monitoring
— Intercepting messages
— Recording calls

e Sold by NSO Group to nation state actors for surveiling suspects
— Also used by some authoritarian governments against political opponents

e Supports very recent iOS versions (up to iOS 16!)

Sources: goodleprojectzero.blogspot.com, vice.com, amnesty.org

https://googleprojectzero.blogspot.com/2021/12/a-deep-dive-into-nso-zero-click.html
https://www.vice.com/en/article/8899nz/nso-group-pitched-phone-hacking-tech-american-police
https://www.amnesty.org/en/latest/research/2021/07/forensic-methodology-report-how-to-catch-nso-groups-pegasus/

munkschool & s RESEARCH NEWS ABOUT Q

Research > Targeted Threats

Triple Threat

NSO Group’s Pegasus Spyware Returns in 2022
with a Trio of i0S 15 and i0S 16 Zero-Click Exploit
Chains

By Bill Marczak, John Scott-Railton, Bahr Abdul Razzak, and Ron Deibert April 18,2023

Key Findings

e In2022, the Citizen Lab gained extensive forensic visibility into new NSO Group exploit
activity after finding infections among members of Mexico’s civil society, including two
human rights defenders from Centro PRODH, which represents victims of military
abuses in Mexico.

e Ourensuing investigation led us to conclude that, in 2022, NSO Group customers
widely deployed at least three iOS 15 and i0S 16 zero-click exploit chains against civil
society targets around the world.

e NSO Group’s third and final known 2022 i0S zero-click, which we call
“PWNYOURHOME,” was deployed against iOS 15 and i0S 16 starting in October 2022. It
appears to be a novel two-step zero-click exploit, with each step targeting a different
process on the iPhone. The first step targets HomeKit, and the second step targets

Source: citizenlab.ca .
- iMessage.

TU

Grazm

https://citizenlab.ca/2023/04/nso-groups-pegasus-spyware-returns-in-2022/

Jailbreak

All third-party applications on iOS are jailed

e Must be signed by registered developer or Apple
e Restricted to very few syscalls

e Can only access its own data container

We want to use the device to its full potential
e Run arbitrary unsigned apps

e Use all syscalls, access full file system, ...
e Example: Run Emulator with JIT

How?

e We sneak out of the jail and open the doors for others to escape
Source: J._Levin: *0S Internals’ IAIK#E}&!_

http://newosxbook.com/index.php

Jailbreak Variants

e Untethered Jailbreak

— Persists across reboots

— Hardest to achieve
e Tethered Jailbreak

— Requires USB connection to host for rebooting

— Jailbreak is accomplished by manipulating the USB stack of BootROM or iBoot
e Semitethered Jailbreak

— Manually run app on device after reboot

— Bootstrap re-jailbreaking from a normal sandboxed app

Source: J. Levin: *0S Internals’

http://newosxbook.com/index.php

Jailbreaking: General procedure

1. Run code on device

— Install enterprise app or exploit built-in app or exploit Lockdown (iTunes) services
2. Bypass code signing

— Run any code we need
3. Escape Sandbox

— Execute arbitrary syscalls, access full file system

— Exploit unprotected built-in service or allowed kernel interface
4. Elevate privileges

— Obtain root acess to modify system files
5. Kernel patching

— Disable AMFI and Sandbox for other processes

Source: J. Levin: *0S Internals’

http://newosxbook.com/index.php

From code execution to kernel

e Usually involves exploiting multiple vulnerabilities
— In built-in services or kernel interfaces

e Hindered by code signing!
— Use Return Oriented Programming (ROP) to chain gadgets of existing functions

e Additional challenge posed by Pointer Authentication (Apple A12+)
— Pointers are signed to prevent modifications

Sources: J. Levin: *0S Internals’, googleprojectzero.blogspot.com

http://newosxbook.com/index.php
https://googleprojectzero.blogspot.com/2019/02/examining-pointer-authentication-on.html

Kernel Patching

Kernel Address Space Layout Randomization (KASLR)
Problem: Kernel loaded at different random offsets for each boot

Solution: Find patch targets by scanning kernel memory
— Look for unique instruction sequences or strings

Kernel Patch Protection (KPP)
Problem: Program in protection level EL3 checks for kernel modifications

Solution: Quickly patch and unpatch between checks
— Obtain task port for kernel_task (tfp0)

Kernel Text Readonly Region (KTRR)
Problem: Modern chips catch write attempts to protected kernel pages in HW

Solution: Attack before KTRR is set up (iBoot) or find r/w kernel struct | AIKﬂ'g,Lag_

Sources: J. Levin: *0S Internals’, blog.siguza.net

http://newosxbook.com/index.php
https://blog.siguza.net/KTRR/

Full Jailbreak Writeup

e Full jailbreaks are complex to find and take years of experience
— The more countermeasures, the harder it gets

e For the interested: Have a look at the early modern jailbreaks

— EvasiOn:
= iOS 6 Jailbreak (2013)
= The first to deal with KASLR
= Source Code Released in 2017 scurce gthubcom
= Writeups for User Space source wwwaccuvant com
= And Kernel Patches source biogazimuthsecurity com

IAIKggfaTU

https://github.com/OpenJailbreak/evasi0n6
https://web.archive.org/web/20160312083132/http:/www.accuvant.com/blog/evasi0n-jailbreaks-userland-component
http://blog.azimuthsecurity.com/2013/02/from-usr-to-svc-dissecting-evasi0n.html

i0OS App Analysis

IAIKgfaTY

Application Analysis

—> Traditionally two approaches
— Dynamic Analysis: Monitor live file access using jailbroken device
— Static Analysis: Look for file API calls + parameters in binary dump
= Still needs jailbroken device to obtain decrypted application binary

Challenge?

e iOS apps are compiled down to native code
— Analysis on disassembly, e.g. using Ghidra or Hopper
— Compilation removes high-level information

— Still, the dynamic nature of Objective-C is helpful here!
= Swift is a little more difficult to reverse!

IAIKggfaTU

Case Study: Viber

Viber Messenger: Chats & Calls
Message with Confidence
Viber Media SARL.

#30 in Social Networking
%k kkKk 4.6« 321.5K Ratings

Free - Offers In-App Purchases

Source: gpps.apple.com

Objective-C Selectors Visible!

-[VIBEncryptionContext initWithContext:]
-[VIBEncryptionContext context]
-[VIBEncryptionContext params]
-[VIBEncryptionContext setParams:]
-[VIBEncryptionContext .cxx_destruct]
-[VIBEncryptionManager initWithinjector:]
-[VIBEncryptionManager dealloc]

-[VIBEncryptionManager checkEncryptionAbilityForAttachment:completion:]

-[VIBEncryptionManager checkEncryptionForConversation:completion:]

-[VIBEncryptionManager beginEncryptionWithContext:]
-[VIBEncryptionManager encryptData:length:withContext:]
-[VIBEncryptionManager endEncryptionWithContext:]
-[VIBEncryptionManager popEncryptionParamsForContext:]
-[VIBEncryptionManager encryptData:encryptionKey:]
-[VIBEncryptionManager calculateMD5ForAttachment:]
-[VIBEncryptionManager decryptAttachment:completion:]
-[VIBEncryptionManager decryptData:withEncryptionParams:]
-[VIBEncryptionManager decryptFile:withEncryptionParams:]
-[VIBEncryptionManager handleSecureStateChanged:]
-[VIBEncryptionManager supportedMediaTypes]
-[VIBEncryptionManager .cxx_destruct]

IAIK T

Grazm

https://apps.apple.com/us/app/viber-messenger-chats-calls/id382617920

Po0632fa
BRR632fc
20063300
00063304
20863306
30063308
2086330a
2006338¢
00063310
30063312
20863316
00063318
@986331a
2006331e
20863322
B0063324
20863328
2006332a
2086332e
30063330
20863334
20063338
2006333a
3006333¢
B006333e
30063340
20063344
20063346
2006334a
2006334¢
2006334e
20063352
20063356
20063358
8086335¢
2086335¢
20063362
20063364
32863368
2086336¢
B286336e
00063370
2063372

Case Study: Viber

rd, [sp, #0x100 + var_100)

str
movw
movt
mov
add
mov
mov
blx
mov
blx
str
mov
blx
ldr.w
mov
blx
mov
blx
str
movw
movt
mov
add
mov
mov
blx
mov
blx
str
mov
blx
dr.w
mov
blx
mov

str
movw
movt
mov
add
mov
mov

r2,
r2,
rl,
r2,
r3,

re,
re,

#0x412e
#0xd9
ré

pc

ré

imp___picsymbolstubd__objc_msgSend

imp___picsymbolstubd__objc_retainAutoreleasedRetur

[sp, #0x1e® + var_C8]
r5

imp__ picsymbolstubd__objc_release

ro,
ri,

(fp)
sl

’

imp___picsymbolstubd__objc_msgSend

s

r7

@"Viber can not verify this number. This may be the result of an error or a breach.\\nPlease verify %@ agai
@"viber can not verify this number. This may be the result of an error or a3 breach.\\nPlease verify %@ agai
argument #2 for method imp___picsymbolstubd__objc_msgSend

@"viber can not verify this number. This may be the result of an error or a breach.\\nPlease verify %@ agai

Method calls have to go through objc_msgSend

Facilitates reverse-engineering

; objc_cls_ref _NSBundle, O0BJC_CLASS_S$_NSBundle, argument #1 for method imp___picsymbolstub4__objc_msgSend

imp___picsymbolstubd__objc_retainAutoreleasedReturnValue

rd,
r2,
r2,
rl,
r2,
r3,
rs,

[sp, #0x100 + var_1e0]
#0x410a

#0xd9

r6

pc

r8

ré

.
.
.
'
’
'

imp___picsymbolstub4__objc_msgSend

1 X

r7

@"Messages sent by participants in this conversation are encrypted and %@ is Verified", :lowerl6:(cfstring_|
@"Messages sent by participants in this conversation are encrypted and %@ is Verified", :upperl6:(cfstring_|

; arqueent #2 for method imp___picsymbolstub4__odjc_msqSend
; @"Messages sent by participants in this conversation are encrypted and %@ is Verified"

imp___picsymbolstub4__objc_retainAutoreleasedReturnValue

re,
re,

[sp, #0x1e® + var_B8]
rs

imp___picsymbolstubd4__objc_release

re,
pt

(fp)
sl

.
.

imp___picsymbolstub4__objc_msgSend

i §°

7

objc_cls_ref_NSBundle,_08JC_CLASS_$_NSBundle, argument #1 for method imp___ picsymbolstub4__objc_msqgSend

imp___picsymbolstubd__objc_retainAutoreleasedReturnvalue

rd,
r2,
r2,
rl,
r2,
r3,
rs,

[sp, #0x100 + var_100)
#0x40¢6

#0xd9

rb

pc

r8

e

.
’
.
’
.
.

.
.

@"This conversation cannot be encrypted. This may be the result of an error BEENgec=location timitation" ,
@"This conversation cannot be encrypted. This may be the result of an error or a geo-location limitation",
argument #2 for method imp___ picsymbolstubd__objc_msgSend

@"This conversation cannot be encrypted. This may be the result of an error or a geo-~location limitation"

e 28.04.2023
— Android Platform Security

e 05.05.2023
— Android Application Security 1

