
Information Security
System Security 3 - Physical Side-Channel and Fault Attacks
19.11.2021

“Human Side-Channel Analysis”

1

Attacks with Physical Access

“If the attacker can execute code
... they have already won”

2

Applications Exposed to Physical Attacks

3

Physical Attack Principle

4

Physical Attacks: Categorization

• Behavior of the attacker
• Side-channel attack: passively observe physical properties
• Fault attack: actively manipulate device to induce faults

• Degree of invasiveness
• Non-invasive: Device is not altered physically
• Semi-invasive: De-packaging, no electrical contact to internal signals
• Invasive: No limits

5

Degree of Invasiveness

Non-Invasive Semi-Invasive Invasive

6

Side-Channel Attacks

Basic Idea of Side-Channel Attacks

Any computation influences physical properties (meta-data)
• Computations depend on secrets (data)
• We observe properties (meta-data) to infer secrets (data)

7

Side-Channel Attacks

• Timing
• Power consumption
• EM emanations
• Sound
• ...

8

Timing Attacks on Cryptographic Implementations

• Often overlooked / ignored
• “outside of threat model”
• implementation bugs

• Sometimes even on certified devices (e.g., Minerva and TPM-Fail)
→ Solution: Make everything constant-time?

9

CMOS Circuits

• Complementary Metal Oxide Semiconductor
• Today’s digital circuits
• Nice properties:

• high noise immunity
• low power consumption
• (Only switching draws power)

• Wait a second... switching draws power?

10

CMOS Circuits - Power Consumption

• Different instructions / data → different switching
• Idea: Measure power consumption during operation

• sampling rate up to gigasamples (109 measurements per
second)

→ a measured power-consumption curve is called a power
trace

• First signal-processing step?

11

Power Consumption - An Example Trace

What do we see here?

10 rounds of AES

12

Power Consumption - Zoom in on Single Round

13

What do we see?

• Operations / Instructions
• Repeated patterns and variations of patterns

• Loops, repeated operations, taken branches
• Learn control flow / instruction sequence

• Jumps in power consumption profile
• Memory accesses (especially EEPROM or flash

programming)
• Access to peripherals (e.g., co-processors, I/O)

→ Can we exploit that?

14

Our First Power-Analysis Attack

We see a power trace of an RSA exponentation (m = cd mod n)
How to get the key from that?

15

Our First Power-Analysis Attack

We see a power trace of an RSA exponentation (m = cd mod n)
How to get the key from that?

16

Excursion: Efficient Implementation of Modular Exponention

� RSA decryption: m = cd mod n, where n has ≥ 2048 bits

3 Efficient implementation?
? Compute (cd) mod n?
○ c and d are also ≥ 2048 bits
� cd has more than 22048 bits!

� Some reminders for modular arithmetic:
• a · b mod n = (a mod n) · (b mod n) mod n
• ca+b mod n = (ca mod n) · (cb mod n) mod n
• ca·b mod n = (ca mod n)b mod n

17

Excursion: Efficient Implementation of Modular Exponention

• Look at exponent d in binary: di = ith bit of d , where d0 = LSB

• Recursive decomposition of exponentiation:
• We can write d = 2 · ⌊d/2⌋+ (d mod 2) = 2 · (d ≫ 1) + d0

In the exponent, we get: cd = (c⌊d/2⌋)2 · cd0

• But c⌊d/2⌋ is still way too large, so repeat:
c⌊d/2⌋ = (c⌊d/4⌋)2 · c⌊d/2⌋ mod 2 = (c⌊d/4⌋)2 · cd1

• . . . until ⌊d/2x⌋ = 1 → c⌊d/2x ⌋ = c

• Iterative version: Start at ⌊d/2x⌋ = 1 and work our way up

18

Excursion: Efficient Implementation of Modular Exponention

• Algorithm: Left-to-right Square-and-Multiply exponentiation

m← 1 // init
for i = 2047 downto 0 : // scan bits from MSB to LSB

m← m2 mod n // squaring: cx = (c⌊x/2⌋)2 · cx0

if di = 1 then: // if bit is set (else x0 = 0 → cx0 = 1, can skip mult.)
m← m · c mod n // then multiply: cx = (c⌊x/2⌋)2 · cx0

• Example: d = 26 = 1 1 0 1 0b → c26 = ((((12 · c)2 · c)2)2 · c)2

19

Excursion: Efficient Implementation of Modular Exponention

M = C d mod n

1 1 0 0 1 1 0 . . .

Result = CResult × Result × C

square multiply

20

Our First Power-Analysis Attack - Key Recovery

21

Our First Power-Analysis Attack - Key Recovery

22

Our First Power-Analysis Attack - Key Recovery

23

Power Side Channel Countermeasures

“Constant-time” means more than just constant time
• No branching on secret data: constant runtime and

control flow
→ always same instruction sequence but different data
• More secure alternatives:

• Constant-time exponentiation algorithms
• Constant-time modular reduction
• ...

And now: “Constant-time” → all problems solved?

24

What about data differences?

CMOS Power Consumption: Data Dependency

Averaged power traces of a load instruction for values {0, 255}

25

CMOS Power Consumption: A Closer Look

Different intermediate values → different power consumption
Record + match values = Template Attack

26

Template Attack - Phase 1 - Characterization / Profiling

• Profile power consumption for each possible value of intermediate v
• Record traces with all inputs known, group by v
• Profile == “Template”

27

Template Attack - Phase 2 - Attack / Exploitation

• Compare (match) measured traces to all templates
• Use v which fits best (compute probabilities)

28

Template Attacks: Conclusion

• Pro: Very powerful
• Key recovery with single trace
• Sometimes the only option (“we only have a single trace”)

• Contra: many prerequisites and detailed knowledge needed
• When is secret processed?
• What is the concrete algorithm?
• Identical device / setup needed where you can control all inputs

29

Another Look at Intermediate Values

There is some kind of pattern...
We can model the power consumption

30

Hamming Weight Power Model

• “Power consumption depends on switching”
• What’s stored before a value is stored? Assume 0
• Now the new value: each ‘1’-bit draws power → power is

proportional to number of bits set
• number of bits set == Hamming weight

31

And Another Look at Intermediate Values

Many devices have similar power behavior → reuse power models
→ an attack without detailed knowledge of device an concrete implementation!

32

Reminder: AES-128 Block Cipher (10 Rounds)

1. SubBytes (SB)

a00 a01 a02 a03

a10 a11 a12 a13

a20 a21 a22 a23

a30 a31 a32 a33

aij

b00 b01 b02 b03

b10 b11 b12 b13

b20 b21 b22 b23

b30 b31 b32 b33

bij

S

2. ShiftRows (SR)
a00 a01 a02 a03

a10 a11 a12 a13

a20 a21 a22 a23

a30 a31 a32 a33

b00 b01 b02 b03

b10 b11 b12 b13

b20 b21 b22 b23

b30 b31 b32 b33

3. MixColumns (MC)

a00 a01 a02 a03

a10 a11 a12 a13

a20 a21 a22 a23

a30 a31 a32 a33

aij

b00 b01 b02 b03

b10 b11 b12 b13

b20 b21 b22 b23

b30 b31 b32 b33

⊗

 2 3 1 1
1 2 3 1
1 1 2 3
3 1 1 2

a0j

a1j

a2j

a3j

b0j

b1j

b2j

b3j

4. AddRoundKey (AK)
a00 a01 a02 a03

a10 a11 a12 a13

a20 a21 a22 a23

a30 a31 a32 a33

k00 k01 k02 k03

k10 k11 k12 k13

k20 k21 k22 k23

k30 k31 k32 k33

b00 b01 b02 b03

b10 b11 b12 b13

b20 b21 b22 b23

b30 b31 b32 b33

+ −
−

33

Excursion: AES

• First round: round key = key
• Other rounds: key schedule

• key schedule is invertible

34

Differential Power Analysis (DPA)

Differential Power Analysis (DPA) in 5 Steps

1. Select intermediate value that depends on a small number of key bits (subkey)
2. Measure power while querying device
3. Enumerate all possible subkey values

• 28 key hypotheses
• for each plaintext/ciphertext: predict intermediate for each key hypothesis

4. Predict power consumption of intermediate (power model, e.g., Hamming
weight)

5. Compare prediction with measurement
• pick key hypothesis that fits best
• statistical hypothesis tests

35

Countermeasures against Power Analysis

Cryptographic
Device

Intermediate
Value

Power
Consumption

Cryptographic
Device

Intermediate
Value

Power
Consumption

Cryptographic
Device

Intermediate
Value

Power
Consumption

Unprotected Hiding Masking

processes

influences

processes

influences

processes

influencesé

é

36

Fault Attacks

Fault Attacks

Just listening is boring ...
→ let’s manipulate things more actively

37

Basic Idea of Fault Attacks

• Goal: manipulate device to compromise security
• Change behavior

• Deactivate countermeasures / sensors
• Skip PIN check

• Fault crypto algorithms
• Compute faulty and correct ciphertexts
• Use difference to reveal key

38

Fault Attack Techniques

• Spike / glitch: clock, voltage, etc.
• Heat, Radiation, Laser

• Effects:
• Instructions skipped
• Data corrupted
• ...

39

Example: PIN Check

40

Example: PIN Check - Skipping Attack

41

Real-World Example: Piracy

PayTV (early 2000s)
• vendors bricked pirated cards via firmware update
• insert endless loop in startup
• solution: glitch to escape loop (“unlooper device”)

42

Real-World Example: Piracy

Gaming devices
• Xbox360 reset hack
• voltage glitching on reset line
• execute untrusted modified firmware

43

Fault Attack on RSA

Excursion: Efficient RSA Signature with Chinese Remainder Theorem

� RSA signatures: S = Md mod n, where n = p · q

� Efficient implementation trick: Chinese Remainder Theorem (CRT)
Ñ Compute signature result modp and modq

Sp = S (mod p) = Md mod p−1 (mod p)
Sq = S (mod q) = Md mod q−1 (mod q)

Ñ . . . and merge the results with CRT:

S = Sp · (q−1 mod p) · q + Sq · (p−1 mod q) · p (mod p · q)

○ 2 exponentiations with half the bit-length and smaller exponents

44

Fault Attack on RSA Signatures with CRT (“Bellcore attack”)

• Compute signature twice and fault one computation �

S = Sp · (q−1 mod p) · q + Sq · (p−1 mod q) · p (mod n)
S� = Sp · (q−1 mod p)� · q + Sq · (p−1 mod q) · p (mod n)

S − S� = · q + (mod n)

something
faulty

some rest
some rest

some garbage 0

• Get the secret q using

gcd(S − S�, n) = gcd(some garbage · q, p · q) = q

45

15:30 Kit -> Daniel

15:15 Daniel -> Kit

Fault Attack on AES

Differential Fault Attacks on AES

Faulting ciphertext?
• No.
• ciphertext difference does not depend on key

46

Differential Fault Attacks on AES

Faulting before AddRoundKey10?
• depends on faults
• not with bit flips (random or known)
• → fault propagates through ⊕:

c = v ⊕ k
c ′ = (v ⊕∆v)⊕ k = c ⊕∆v

• → ciphertext difference still does not depend on key

47

Differential Fault Attacks on AES

Faulting before ShiftRows10?
• same as before
• ShiftRows just rearranges bytes

48

Differential Fault Attacks on AES

Faulting before SubBytes10?
• ...depends on faults
• Able to flip 1 bit?
→ Attacks possible

49

Single-Bit Fault before SubBytes

Receive correct and faulty ciphertext
Enumerate all 28 values for ki

• compute back to v (for correct and fault, for all possible ki)
• compute ∆v for ki

• check if ∆v follows ault model (1 bit fault)
• indices can be different because of ShiftRows

50

Single-Bit Fault before SubBytes - Example

Correct Output = 1A Faulty Output = 99

k: 0 1 2 3 4 5 6 7 8 ...

C = 1a : S^-1(C xor k):
C’= 99 : S^-1(C’ xor k):

51

Single-Bit Fault before SubBytes - Example

Correct Output = 1A Faulty Output = 99

k: 0 1 2 3 4 5 6 7 8 ...

C = 1a : S^-1(C xor k): 43 44 34 8e e9 cb c4 de 39 ...
C’= 99 : S^-1(C’ xor k): f9 e2 e8 37 75 1c 6e df ac ...

52

Single-Bit Fault before SubBytes - Example

Correct Output = 1A Faulty Output = 99

k: 0 1 2 3 4 5 6 7 8 ...

C = 1a : S^-1(C xor k): 43 44 34 8e e9 cb c4 de 39 ...
C’= 99 : S^-1(C’ xor k): f9 e2 e8 37 75 1c 6e df ac ...

^^

Only few keys have this property → filter them
Use further C/C’ pairs to get down to 1 key

53

AES – Simple DFA (Summary)

• Assume the attacker can cause precise 1-bit flips
in Round 9 of AES, before S-box

• For each of 28 key guesses,
Test if the partial decryption produces the expected 1-bit flip.

�

SB SR MC SB SR

K8 K9 K10

| Round 9 | Round 10 |

…

54

AES – DFA on More Rounds

• Assume the attacker can cause imprecise 1-byte errors
• For each of 232 key guesses,

Test if the partial decryption produces the expected 1-byte error.
(This can be optimized to require only 2 faulty encryptions to recover the full key)

�

SB SR MC SB SR

K8 K9 K10

| Round 9 | Round 10 |

…

55

AES-NI (New Instructions)

56

AES New Instructions - inside SGX

do
{

i++;
plaintext = <randomly generated >

result1 = aes128_enc (plaintext);
result2 = aes128_enc (plaintext);

} while (vec_equal_128 (result1 , result2) && i< iterations);

57

11:00 Kit: AES-NI Demonstration -> Daniel: LOGO!! A name should relate to the technical explanation, meaning and the impact

Countermeasures for Fault Attacks

Analog Countermeasures

Detect anomaliesa

• Active fine wire meshes across IC → disruption is detected
• Power surge sensors
• Temperature sensors
• Light sensors

aIBM 4767 Hardware Security Module battery-backed monitoring, meshes, light
sensors, temperature sensors, etc. immediate deletion of keying material on
tamper detection

58

Redundancy-based Countermeasure: Double Execution

Encrypt multiple times, compare result
• comparison at different granularities possible:
• encryption, single round, each operation, ...

But the attacker might be able to
• inject the same fault twice (difficult ...)
• or use more sophisticated methods (statistical attacks)

59

Take Aways

Attack → defense → next attack → next defense → ...
• different side channels, more sophisticated attacks
• a never-ending cat-and-mouse game

There is no “100% secure”, especially in the physical setting
• any device can be broken by a determined attacker

Our goal:
• Ensure that attack effort is much greater than the value of the

secret
• or: Would you do an attack that costs millions to get a free

tram ride?

60

Thanks to Peter Pessl for some of the slides!

