Information Security

System Security 3 - Physical Side-Channel and Fault Attacks
19.11.2021

e ™ D

3 "\‘\““\0“ ’ " 'y

N
- '..

4\
o°. o,
0 ,

-

“Human Side-Channel Analysis”

Attacks with Physical Access

WAME DES-GELDINSTITUTES

=

“If the attacker can execute code

... they have already won"

Applications Exposed to Physical Attacks

Physical Attack Principle

Manipulation
Attacker K Communication > Device
Observation

TEMPEST: A Signal Problem

The story of the discovery
of various compromising radiations
from communications and Comsec equipmeant.

impractical. Hydraulic techniques—to replace the
electrical—were tried and abandoned, and experiments
were made with different types of batteries and motor
generators, in attempts to lick the power.line problem.
None was very successful.

During this period, the business of discovering new
TEMPEST threats, or refining techniques and
instrumentation for dececting, recording, and analyzing
these signals, progressed more swiftly than the art of
suppressing them. Perhaps the attack is more exciting than
the defense—something more glamorous about finding a
way to read one of these signals than going through the
drudgery necessary to suppress that whacking great spike
first seen in 1943. At any rate, when they turned over the
next rock, they found the acoustic problem under it
Phenomenon No. 5.

Acoustics

We found that most acoustic emanations are difficult to
exploit if the microphonic device is outside of the room
containing the source equipment; even a piece of paper
inserted between, say, an offending keyboard and a pick-up

. P, o

Physical Attacks: Categorization

= Behavior of the attacker
= Side-channel attack: passively observe physical properties
» Fault attack: actively manipulate device to induce faults
= Degree of invasiveness
= Non-invasive: Device is not altered physically

= Semi-invasive: De-packaging, no electrical contact to internal signals
= Invasive: No limits

Degree of Invasiveness

Non-Invasive Semi-Invasive Invasive

Side-Channel Attacks

imgfiip. com A

Basic ldea of Side-Channel Attacks

Any computation influences physical properties (meta-data)
= Computations depend on secrets (data)

= We observe properties (meta-data) to infer secrets (data)

Side-Channel Attacks

Timing
= Power consumption
EM emanations

Sound

Timing Attacks on Cryptographic Implementations

= Often overlooked / ignored

= “outside of threat model”
= implementation bugs

= Sometimes even on certified devices (e.g., Minerva and TPM-Fail)

— Solution: Make everything constant-time?

CMOS Circuits

vdd = Complementary Metal Oxide Semiconductor
l: = Today's digital circuits
A +—Q = Nice properties:
l: = high noise immunity
= |ow power consumption
\/ss = (Only switching draws power)

Wait a second... switching draws power?

CMOS Circuits - Power Consumption

= Different instructions / data — different switching

= |dea: Measure power consumption during operation

= sampling rate up to gigasamples (10° measurements per

second)
— a measured power-consumption curve is called a power
trace

= First signal-processing step?

. +'-.:-',_:.:;.
= o
s N l'-'
i
& 2

‘Look at me!

Power Consumption - An Example Trace

0.4
0.2 1
5 oo What do we see here?
-0.2
10 rounds of AES
—0.4
6 2600 4600 6600 BDIOO 10600 12600
Sample (kPts.)

Power Consumption - Zoom in on Single Round

0.4 4

0.2 4

0.0 4

Data

—0.2 4

—0.44

T T T T T
0 1000 2000 3000 4000 5000
Sample (kPts.)

What do we see?

= Operations / Instructions
= Repeated patterns and variations of patterns

= Loops, repeated operations, taken branches
= Learn control flow / instruction sequence

= Jumps in power consumption profile

= Memory accesses (especially EEPROM or flash

programming)
= Access to peripherals (e.g., co-processors, 1/0)

— Can we exploit that?

Our First Power-Analysis Attack

260

240 =

200

180

160

%10°

Our First Power-Analysis Attack

260

240

220

200

180

160

05 1 15 2 25

<10

d

We see a power trace of an RSA exponentation (m = c® mod n)

How to get the key from that?

Excursion: Efficient Implementation of Modular Exponention

& RSA decryption: m = c? mod n, where n has > 2048 bits

£ Efficient implementation?
© Compute (c?) mod n?
© c and d are also > 2048 bits
A ¢ has more than 22948 pits!

Some reminders for modular arithmetic:

= a-bmodn=(amodn)-(bmod n) mod n

a+b

» ¢®®mod n= (c? mod n) - (c® mod n) mod n

= c®> mod n = (c? mod n)? mod n

Excursion: Efficient Implementation of Modular Exponention

= Look at exponent d in binary: d; = ith bit of d, where dy = LSB

= Recursive decomposition of exponentiation:
= We can write d =2 [d/2] + (d mod2) =2-(d > 1)+ dy
In the exponent, we get: ¢ = (cl9/2])2. c%

= But cl9/2) is still way too large, so repeat:
cld/2l = (cld/aly2 . cld/2imod 2 — (cld/4]y2 . cdi

= .. until |_d/2XJ =1 = CLd/QXJ =cC

= lterative version: Start at [d/2¥] =1 and work our way up

Excursion: Efficient Implementation of Modular Exponention

= Algorithm: Left-to-right Square-and-Multiply exponentiation

m<+1

for i = 2047 downto O :
m < m? mod n
if d; = 1 then:

m<+ m-cmodn

s Example: d =26=11

// init

// scan bits from MSB to LSB

// squaring: ¢~ = (c¥/2)2. 0

// if bit is set (else xp =0 — ¢® =1, can skip mult.)
// then multiply: ¢* = (c*/21)2. ¢%o

10, = ¢ =((((1%2-¢)?-¢c)?)? ¢

Excursion: Efficient Implementation of Modular Exponention

’ Result ‘ = | Result | X ’ Result ‘ X ’ C

square mulrciply

Our First Power-Analysis Attack - Key Recovery

260

240 -

200

180

160

%10°

Our First Power-Analysis Attack - Key Recovery

260

240

220

200

180

160

Our First Power-Analysis Attack - Key Recovery

260

Power Side Channel Countermeasures

“Constant-time"” means more than just constant time
= No branching on secret data: constant runtime and
control flow
— always same instruction sequence but different data

= More secure alternatives:

= Constant-time exponentiation algorithms

= Constant-time modular reduction

And now: “Constant-time"” — all problems solved?

What about data differences?

CMOS Power Consumption: Data Dependency

Power consumption trace of different intermediates

Power

—0.3

Sample

Averaged power traces of a load instruction for values {0, 255}

CMOS Power Consumption: A Closer Look

Power consumption at sample 45 by intermediates

-0.14 °
—0.15 {0 o [L/
. *_@e Q ® ®] .:. o
7] .~~ S o 4 L) L) -
Pl “on ST, o ‘5\\4" "&.’\‘. e "-“}-‘ e
& 3 @ = ® '\. o .\ 4
-0.17 ° 0.‘0 ¢ a9, < W, ® Pe
- < * L
0 50 100 150 200 250

Intermediate Value

Different intermediate values — different power consumption
Record 4+ match values = Template Attack

Template Attack - Phase 1 - Characterization / Profiling

=0 =1 v=2"

= Profile power consumption for each possible value of intermediate v
= Record traces with all inputs known, group by v

= Profile == “Template”

Template Attack - Phase 2 - Attack / Exploitation
v=0 v=1 v=2n

= Compare (match) measured traces to all templates

= Use v which fits best (compute probabilities)

Template Attacks: Conclusion

= Pro: Very powerful

= Key recovery with single trace

= Sometimes the only option (“we only have a single trace”)
= Contra: many prerequisites and detailed knowledge needed

= When is secret processed?
= What is the concrete algorithm?
= |dentical device / setup needed where you can control all inputs

Another Look at Intermediate Values

Power consumption at sample 45 by intermediates

—0.14 °
—0.15 |0 o . r
. *_@e Q ® ®] .:. o
g o™ 0P “ﬁ'o: o 3 LY s 3,
3 -0.16 L s A ° .
Yy :':, s) 't:‘:“ .\:. . 5"'.\ g e
—-0.17 ol . a9, < @ e
- < * L
0 50 100 150 200 250

Intermediate Value

There is some kind of pattern...
We can model the power consumption

Hamming Weight Power Model

= “Power consumption depends on switching”
= What's stored before a value is stored? Assume 0

m = Now the new value: each ‘1’-bit draws power — power is
proportional to number of bits set

= number of bits set == Hamming weight

And Another Look at Intermediate Values

Power

Power consumption at sample 45 by intermediates

-0.14 °
-0.15 .“ .. Q
.q.q ° [o° ® .'.
oy “ T ot X’ '-\v..: t’\»‘. *».,, L0}
-0.17 % ‘..o ' \; [9‘0
%
6 Sb 100 150 - 200 25‘)0

Intermediate Value

Many devices have similar power behavior — reuse power models
an attack without detailed knowledge of device an concrete implementation!

Power

Reminder: AES-128 Block Cipher (10 Rounds)

1. SubBytes (SB)

400

a10

a2o

aso

as3

2. shiftRows (SR)

Elooy

—g—

—y

bio

b2o

bos

b3

b3

b33

bo1

bo2

dF

A

ae

r
—
o

ﬂoo

U

T

o

b3o

3. MixColumns (MC)

a00

aio

ao

aso

4. AddRoundKey (AK)

a00 201 | 202 | @03 koo | ko1 | ko2 | ko3 boo | boz | boz | bo3
aio|ai1|aiz2|ai3 + kio | k11| k12| k13| e |D10|b11|b12|b13
ax0|az1|ax | a3 koo | ko1 | ko2 | k23 - boo | b21 | b2z | bo3
asp|as1|asz|as3 k30| k31 | k2| ks3 b3o|b31 | b32| b3z

Excursion: AES

= First round: round key = key

= Other rounds: key schedule

= key schedule is invertible

Differential Power Analysis (DPA)

Differential Power Analysis (DPA) in 5 Steps

1. Select intermediate value that depends on a small number of key bits (subkey)
2. Measure power while querying device
3. Enumerate all possible subkey values
» 2% key hypotheses
= for each plaintext/ciphertext: predict intermediate for each key hypothesis
4. Predict power consumption of intermediate (power model, e.g., Hamming
weight)
5. Compare prediction with measurement

= pick key hypothesis that fits best
= statistical hypothesis tests

Correlation (abs)

0.8

0.7 4

0.6

0.5 4

0.4

0.3 4

0.2 4

0.1

0.0 4

o4

T
200

400

T
600

T
800
Sample

T
1000

T
1200

T
1400

Countermeasures against Power Analysis
Cryptographic Cryptographic Cryptographic
Device Device Device

l processes J processes rocesses

Intermediate Intermediate

Intermediate

Value Value

influences influences

Power Power

Consumption Consumption Consumption

Unprotected Hiding Masking

Fault Attacks

Fault Attacks

Manipulation
Attacker K_ Communication > Device
Observation

Just listening is boring ...

— let’s manipulate things more actively

Basic Idea of Fault Attacks

= Goal: manipulate device to compromise security

= Change behavior

w¥

A

» Deactivate countermeasures / sensors
= Skip PIN check

= Fault crypto algorithms

= Compute faulty and correct ciphertexts
= Use difference to reveal key

Fault Attack Techniques

= Spike / glitch: clock, voltage, etc.

= Heat, Radiation, Laser

» Effects:

= Instructions skipped
= Data corrupted

Example: PIN Check

unsigned pin = read_pin();
bool auth = tpm_check(pin);
if(auth) {

open_door();
}else {

alert_police();

log_event();
l— check condition —l
| perform action | | handle error |

continue

Example: PIN Check - Skipping Attack

check_auth: // auth in RO (1 if true)
LDR R1, #1
CMP RO, R1
BNE not_authenticated

check_auth: // auth in RO (1 if true)
LDR R1, #1
CMP RO, R1
BNEnet—authenticated

L]

¥

authenticated:
/I open door
...
B next

authenticated:
/I open door
...
B next

not_authenticated:
/Il alert police

L]

next:
/I'log event

next:
/I log event

Real-World Example: Piracy

PayTV (early 2000s)

= vendors bricked pirated cards via firmware update

= insert endless loop in startup

= solution: glitch to escape loop (“unlooper device")

Real-World Example: Piracy

Gaming devices
= Xbox360 reset hack

= voltage glitching on reset line

= execute untrusted modified firmware

Fault Attack on RSA

Excursion: Efficient RSA Signature with Chinese Remainder Theorem

& RSA signatures: S = M9 mod n, where n=p- g
Efficient implementation trick: Chinese Remainder Theorem (CRT)
{2 Compute signature result modp and modgq

(mod p) = M9 medP=1 (mod p)
_ Md mod g—1

p =95
=5 (mod q)

q (mod q)

¥ . and merge the results with CRT:
S=S,-(q¢ ' modp)-q+Ss-(p ' modq)-p (modp-q)

© 2 exponentiations with half the bit-length and smaller exponents

Fault Attack on RSA Signatures with CRT (“Bellcore attack”)

= Compute signature twice and fault one computation ¥

S :’ something ‘] some rest \ (mod n)
s? =| faulty |- g +] some rest | (mod n)
s_g" :’ some garbage ‘ +| 0 | (mod n)

= Get the secret g using

g — 5%.n) = gcdome arage] .) =

bagger> dog Enclave/encl]]

15:30 Kit -> Daniel

15:15 Daniel -> Kit

Fault Attack on AES

Differential Fault Attacks on AES

Round 7

Round 8

Round ¢

round

v
KixColumns

¥V

AddRoundKey = RK-

SubBytes
12
ShiftRows
¥

lixColumns

¥

AddRoundKey - RK.

SubBytes
v
ShiftRows
v

MixColumns
AddRoundKey - RK:

SubBytes
12
ShiftRows
v

AddRoundKey = RK

Ciphertext

Faulting ciphertext?
= No.

= ciphertext difference does not depend on key

Differential Fault Attacks on AES

o me*n
e
% | Faulting before AddRoundKey107?
e ‘"*R = depends on faults
7 : = not with bit flips (random or known)
. % = — fault propagates through @:
o c=vak
HR!M - d=(veAv)dk=cd Av
e HR":RM . = — ciphertext difference still does not depend on key

z -
-
%

Differential Fault Attacks on

Round 7

Round 8

Round ¢

Final round

v
KixColumns

¥V

AddRoundKey

SubBytes
12

ShiftRows
¥

lixColumns

¥

AddRoundKey

SubBytes
v
ShiftRows
v

MixColumns
AddRoundKey
¥

SubBytes
12
ShiftRows
v

AddRoundKey

Ciphertext

- R

- RK

- RK;

- RK,

Faulting before ShiftRows107
= same as before

= ShiftRows just rearranges bytes

Differential Fault Attacks on AES

Round 7

-

MixColumns

-

AddRoundKey = RK-

SubByte:

Ei

SRE - 0

Round 8

Faulting before SubBytes107?

acsRounKey = ...depends on faults
i = Able to flip 1 bit?

ey = RK — Attacks possible

@
- DD -
5

7
E]

Round 9

-

AddRou

o
- DD -
P

Final round

7
E

AddRoundKey = RK

7 -

rext

Single-Bit Fault before SubBytes

Receive correct and faulty ciphertext

Enumerate all 28 values for k;

compute back to v (for correct and fault, for all possible k;)
compute Av for k;
check if Av follows ault model (1 bit fault)

indices can be different because of ShiftRows

Single-Bit Fault before SubBytes - Example

Correct Output = 1A Faulty Output = 99

k C=1la : $7-1(C xor k):
C’= 99 : 87-1(C’ xor k):

Single-Bit Fault before SubBytes - Example

Correct Output = 1A Faulty Output = 99

k C=1a : S7-1(C xor k): 43 44 34 8e €9 cb c4 de 39 ...
C’= 99 : S7-1(C’ xor k): f9 e2 e8 37 75 1c 6e df ac ...

Single-Bit Fault before SubBytes - Example

v Correct Output = 1A Faulty Output = 99

C=1a : 87-1(C =xor k): 43 44 34 8e €9 cb c4 de 39 ...
K C’= 99 : S7-1(C’ xor k): f9 e2 e8 37 75 1c 6e df ac ...

~a~

G Only few keys have this property — filter them
Use further C/C’ pairs to get down to 1 key

AES — Simple DFA (Summary)

= Assume the attacker can cause precise 1-bit flips
in Round 9 of AES, before S-box

= For each of

Test if the partial decryption produces the expected 1-bit flip.

.
-
]
N
I
Y

SB SR MC - SBM{{ SR M4 y M{H
Y [
Ll

M
2

/ Round 9 / Round 10 /

AES — DFA on More Rounds

= Assume the attacker can cause imprecise 1-byte errors

= For each of

Test if the partial decryption produces the expected 1-byte error.

(This can be optimized to require only 2 faulty encryptions to recover the full key)

Ks Ko Ko
5
, sp/--Hsrm ue , SB BT SR
- e e
/ Round 9 / Round 10 /

AES-NI (New Instructions)

Instruction Description
AESENC Perform one round of an AES encryption flow
AESENCLAST Perform the last round of an AES encryption flow
AESDEC Perform one round of an AES decryption flow
AESDECLAST Perform the last round of an AES decryption flow

AESKEYGENASSIST | Assistin AES round key generation
AESIMC Assist in AES Inverse Mix Columns

PCLMULQDQ Carryless multiply (CLMUL)

AES New Instructions - inside SGX

do

{
i++;
plaintext = <randomly generated>
resultl = aes128_enc(plaintext);

result2 = aes128_enc(plaintext);

} while (vec_equal_128(resultl ,result2) && i<iterations);

bagger> sudo ./aes-encrypt 100000 -262

11:00 Kit: AES-NI Demonstration -> Daniel: LOGO!! A name should relate to the technical explanation, meaning and the impact

CRYPTO

- b

Countermeasures for Fault Attacks

Analog Countermeasures

Detect anomalies?
= Active fine wire meshes across |IC — disruption is detected
= Power surge sensors

= Temperature sensors

= Light sensors

?IBM 4767 Hardware Security Module battery-backed monitoring, meshes, light
sensors, temperature sensors, etc. immediate deletion of keying material on
tamper detection

Redundancy-based Countermeasure: Double Execution

Encrypt multiple times, compare result
= comparison at different granularities possible:

= encryption, single round, each operation, ...

ENC-DETECT

But the attacker might be able to
= inject the same fault twice (difficult ...)

= or use more sophisticated methods (statistical attacks)

Take Aways

Attack — defense — next attack — next defense — ...

= different side channels, more sophisticated attacks

. = a never-ending cat-and-mouse game
There is no “100% secure”, especially in the physical setting
—_— = any device can be broken by a determined attacker
:: Our goal:

= Ensure that attack effort is much greater than the value of the
secret

= or: Would you do an attack that costs millions to get a free
tram ride?

Thanks to Peter Pessl for some of the slides!

