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Side-channel Attacks

� Safe software infrastructure does not mean safe execution

� Information leaks because of the underlying hardware

� Exploit unintentional information leakage by side-effects

Power consumption Execution time CPU caches
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Side channels in Software

� Side channels also exist in software

� Can be used for attacks

� Usually timing differences
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Example: PIN Comparison

� Trivial approach: Compare each digit until a difference

int check_pin(char* input) {

const char* correct = "1234";

for(int i = 0; i < 4; i++) {

if(correct[i] != input[i]) {

// digit differs , abort

return ERROR;

}

}

// PIN is correct

return OK;

}
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Example: PIN Comparison

� Measuring the execution times for different PINs

PIN Time

0000

1000
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3000

· · · · · ·

� If digit is correct, next digit is checked → longer execution time

� 10 tries (maximum) to get a digit
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Example: PIN Comparison

� Measuring the execution times for different PINs

PIN Time

1000

1100

1200

1300

· · · · · ·

� Repeat for every digit

� Longest execution time reveals correct digit
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Example: PIN Comparison

� Maximum 10 measurements per digit

� 4-digit PIN: 40 tries

� Brute force: 10 000 tries

� Simple side channel reduces tries by factor 250
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Example: PIN Comparison

� Many functions can be implemented with constant runtime

int check_pin(char* input) {

const char* correct = "1234";

int same = 0;

for(int i = 0; i < 4; i++) {

same |= correct[i] - input[i];

}

return (same == 0);

}

� Sometimes, there is still a side channel in the hardware
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Architecture and Microarchitecture

� Instruction Set Architecture (ISA) is an abstract model of a

computer (x86, ARMv8, SPARC, . . . )

� Serves as the interface between hardware and software

� Microarchitecture is an actual implementation of the ISA
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Microarchitectural Elements

� Modern CPUs contain multiple microarchitectural elements

Caches and buffer Predictor

� Transparent for the programmer

� Optimize program execution

� Timing differences → side-channel leakage
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CPU Cache
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Memory Access Latency
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Cache hierarchy

Core 0

L1

L2

Core 1

L1

L2

Core 2

L1

L2

Core 3

L1

L2
ring bus

LLC
slice 0

LLC
slice 1

LLC
slice 2

LLC
slice 3

� L1 and L2 are private

� Last-level cache is

� divided into slices

� shared across cores

� inclusive
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Set-associative Last-level Cache

Memory Address

Cache

Way 0 Way 1 ... Way n

6 bits11 bits

Cache Set

2048 cache sets

Cache Line

• Location in cache depends on the physical address of data

• Bits 6 to 16 determine the cache set

• A cache set has multiple ways to store the data

• A way inside a cache set is a cache line, determined by the cache replacement policy
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Flush+Reload
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Flush+Reload

struct shared_data [256];

[...]

return shared_data [84];

[...]

� Flush+Reload over memory locations
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� Accessed index results in faster access time
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Flush+Reload on Keystrokes
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� Key presses trigger code execution in shared library (e.g., libgdk)

� Flush+Reload does not reveal actual key, only time difference between keys

� → Recover text with machine learning
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A Double Fetch

string

/ p a t h / f i l e \0Xp a y l o a d \0

length length

Thread 1
strcpy(string , "/path/file\0 payload");

open(string , O_CREAT);

// <switch to kernel >

int len = strlen(string);

char* local = malloc(len + 1);

strcpy(local , string);

// <memory corruption >

Thread 2

schedule
schedule string [10] = ’X’;
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Flush+Reload
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Double-fetch Detection
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Cache-based Trigger
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Prime+Probe
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RSA

M = C
d
mod n

1 1 0 0 1 1 0 . . .

Result = CResult × Result × C

square multiply

23



Measured Trace

Raw Prime+Probe trace...
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Measured Trace

...processed with a simple moving average...
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Measured Trace

...allows to clearly see the bits of the exponent
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Covert channel

What is a covert channel?

� Two programs would like to communicate but are not allowed
to do so

� either because there is no communication channel...

� ...or the channels are monitored and programs are stopped on

communication attempts

� Use side channels and stay stealthy
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Covert channel
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Sending Data
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Other Microarchitectural Elements

� Multiple other elements with timing differences

� TLB

� DRAM

� Memory Bus

� Execution Units

� ...

� Many side-channel attacks exploiting them
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Meta Data

� So far, only memory accesses

� Meta data, no actual data

� Sufficient to deduce data...

� ...if memory accesses are secret dependent
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Building Block

� Side channels can be part of an attack

� Also for conventional memory corruption attacks

� Side channels as building blocks

� Required information (e.g., break ASLR)

� Additional information (e.g., length of password)

� Covertly transmit information

� Transient-execution attacks
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Meltdown

� Meltdown is a CPU vulnerabilities

� Discovered in 2017 by multiple independent teams

� Allows breaking the process isolation

� Side-channel attack is a core building block
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Hardware Isolation

� Kernel is isolated from user

space

� This isolation is a combination

of hardware and software

� User applications cannot access

anything from the kernel

� There is only a well-defined

interface → syscalls

Userspace Kernelspace

Applications
Operating
System Memory
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In-Order Execution

IF ID EX MEM WB

IF ID EX MEM WB

IF ID EX MEM WB

IF ID EX MEM WB

IF ID EX MEM WB

� Instructions are...

� fetched (IF) from the L1 Instruction Cache

� decoded (ID)

� executed (EX) by execution units

� Memory access is performed (MEM)

� Architectural register file is updated (WB)
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In-Order Execution

� Instructions are executed in-order

� Pipeline stalls when stages are not ready

� If data is not cached, we need to wait
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Out-of-order Execution

int width = 10, height = 5;

float diagonal = sqrt(width * width

+ height * height);

int area = width * height;

printf("Area %d x %d = %d\n", width , height , area);
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Out-of-Order Execution
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Instructions are

� fetched and decoded in the front-end

� dispatched to the backend

� processed by individual execution units
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Out-of-Order Execution
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Instructions

� are executed out-of-order

� wait until their dependencies are ready

� Later instructions might execute prior earlier instructions

� retire in-order

� State becomes architecturally visible

� Exceptions are checked during retirement

� Flush pipeline and recover state
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The state does not become architecturally visible but . . .



Building the Code

� New code

*( volatile char*) 0;

array [84 * 4096] = 0;

� volatile because compiler was not happy

warning : s ta tement wi th no e f f e c t [=Wunused=v a l u e ]

*( char *) 0 ;

� Static code analyzer is still not happy

warning : De r e f e r e n c e o f n u l l p o i n t e r

*( v o l a t i l e char *) 0 ;
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Building the Code

� Flush+Reload over all pages of the array
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� “Unreachable” code line was actually executed

� Exception was only thrown afterwards
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Building the Code

� Out-of-order instructions leave microarchitectural traces

� We can see them for example in the cache

� Give such instructions a name: transient instructions

� We can indirectly observe the execution of transient instructions
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Loading an address
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Building the Code

� Add another layer of indirection to test

char data = *(char*) 0xffffffff81a000e0;

array[data * 4096] = 0;

� Then check whether any part of array is cached
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Building the Code

� Flush+Reload over all pages of the array
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� Index of cache hit reveals data

� Permission check is in some cases not fast enough
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Kernel Direct-Physical Map
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Meltdown

� Using out-of-order execution, we can read data at any address

� Index of cache hit reveals data

� Permission check is in some cases not fast enough

� Entire physical memory is typically accessible through kernel space

48







Generalization

� Meltdown is a whole category of vulnerabilities

� Not only the user-accessible check

� Looking closer at the check...
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Paging

� CPU uses virtual address spaces to isolate processes

� Physical memory is organized in page frames

� Virtual memory pages are mapped to page frames using

page tables
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Address Translation on x86-64

PML4I (9 b) PDPTI (9 b) PDI (9 b) PTI (9 b) Offset (12 b)

48-bit virtual address

CR3
PML4

PML4E 0

PML4E 1
···

#PML4I
···

PML4E 511

PDPT

PDPTE 0

PDPTE 1
···

#PDPTI
···

PDPTE 511

Page Directory

PDE 0

PDE 1
···

PDE #PDI
···

PDE 511

Page Table

PTE 0

PTE 1
···

PTE #PTI
···

PTE 511

4 KiB Page

Byte 0

Byte 1
···

Offset
···

Byte 4095

51



Page Table Entry

P RW US WT UC R D S G Ignored

Physical Page Number
Ignored X

� User/Supervisor bit defines in which privilege level the page can be accessed
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Page Table Entry

P RW US WT UC R D S G Ignored

Physical Page Number
Ignored X

� Present bit is the next obvious bit
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Foreshadow-NG

� An even worse bug → Foreshadow-NG/L1TF

� Exploitable from VMs

� Allows leaking data from the L1 cache

� Same mechanism as Meltdown

� Just a different bit in the PTE

54



Foreshadow-NG

Page Table

PTE 0

PTE 1
···

PTE #PTI
···

PTE 511

presentnot present

L1 lookup

with

virtual address

Guest Physical

to Host Physical
Physical

Page

L1 lookup

with
physical address

L1

Cache
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Foreshadow-NG Fix

� KAISER/KPTI/KVA does not help

� Only software workarounds

→ Flush L1 on VM entry

→ Disable HyperThreading

� Workarounds might not be complete
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Meltdown Variants

Pagefault

Meltdown-US

Meltdown-P

Meltdown-RW

Meltdown-PK-L1

Meltdown-SM-SB

Meltdown-US-L1

Meltdown-US-LFB

Meltdown-US-SB

Meltdown-P-L1

Meltdown-P-LFB

Meltdown-P-SB

Meltdown-P-LP
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Meltdown Root Cause

operation #n
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data dependency

data Meltdown

possibly

architectural transient execution

exception raise

time
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Meltdown Tree

Transient cause Meltdown-type

Meltdown-NM-REG

Meltdown-PF

Meltdown-BR

Meltdown-GP

Meltdown-MCA

Meltdown-US

Meltdown-P

Meltdown-RW

Meltdown-PK-L1

Meltdown-SM-SB

Meltdown-MPX

Meltdown-BND

Meltdown-CPL-REG

Meltdown-NC-SB

Meltdown-AD

Meltdown-AVX-LP

Meltdown-US-L1

Meltdown-US-LFB

Meltdown-US-SB

Meltdown-P-L1

Meltdown-P-LFB

Meltdown-P-SB

Meltdown-P-LP

Meltdown-AD-LFB

Meltdown-AD-SB
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Latest Meltdown Variant: ZombieLoad

� Leaks from the fill buffer

� Crosses all privilege boundaries (Kernel, VM, SGX)

� Explored microcode assists as new type of faults

� Disadvantage: minimal control over leaked data
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Meltdown Outlook

� Meltdown is not a fully solved issue

� The tree is extensible

� More Meltdown-type issues to come

� Silicon fixes might not be complete
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Transient-Execution Attacks

� Meltdown not the only transient-execution attacks

� Spectre is a second class of transient-execution attacks

� Instead of faults, exploit control (or data) flow predictions
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Speculative Execution

� CPU tries to predict the future (branch predictor), . . .

� . . . based on events learned in the past

� Speculative execution of instructions

� If the prediction was correct, . . .

� . . . very fast

� otherwise: Discard results
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Spectre-PHT (aka Spectre Variant 1)

Memory
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Spectre Root Cause
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Spectre Root Cause

� Many predictors in modern CPUs

� Branch taken/not taken (PHT)

� Call/Jump destination (BTB)

� Function return destination (RSB)

� Load matches previous store (STL)

� Most are even shared among processes
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Spectre Variants

Transient

cause?

Spectre-type

microarchitec-

tural buffer
Spectre-PHT

Spectre-BTB

Spectre-RSB

Spectre-STL

mistraining

strategy Cross-address-space

Same-address-space

PHT-CA-IP

PHT-CA-OP

PHT-SA-IP

PHT-SA-OP

in-place (IP) vs., out-of-place (OP)

Cross-address-space

Same-address-space

BTB-CA-IP

BTB-CA-OP

BTB-SA-IP

BTB-SA-OP

Cross-address-space

Same-address-space

RSB-CA-IP

RSB-CA-OP

RSB-SA-IP

RSB-SA-OP

prediction
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Spectre Fix

� Spectre is not a bug

� It is an useful optimization

→ Cannot simply fix it (as with Meltdown)

� Workarounds for critical code parts
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Spectre Mitigations

� Current mitigations are either incomplete or cost performance

→ More research required

� Both on attacks and defenses

→ Efficient defenses only possible when attacks are known
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Leaking Data

� Side channels so far

� leak meta data

� covertly transmit data

� As a building block

� leak data

� What about modifying data?
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DRAM organization

channel 0

channel 1

back of DIMM: rank 1

front of DIMM:

rank 0

chip
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DRAM organization

chip

bank 0

row 0

row 1

row 2

. . .

row 32767

row buffer

64k cells
1 capacitor,

1 transistor each
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How reading from DRAM works

DRAM bank

1 1 1 1 1 1 1 1 1 1 1 1 1 1

1 1 1 1 1 1 1 1 1 1 1 1 1 1

1 1 1 1 1 1 1 1 1 1 1 1 1 1

1 1 1 1 1 1 1 1 1 1 1 1 1 1

. . .

1 1 1 1 1 1 1 1 1 1 1 1 1 1

row buffer

CPU wants to access row 1

→ row 1 activated

→ row 1 copied to row buffer

activate

row buffer

1 1 1 1 1 1 1 1 1 1 1 1 1 1

copy

return

CPU wants to access row 2

→ row 2 activated

→ row 2 copied to row bufferactivate

row buffer

1 1 1 1 1 1 1 1 1 1 1 1 1 1

copy
return

→ slow (row conflict)

CPU wants to access row 2—again

→ row 2 already in row buffer

return

→ fast (row hit)

row buffer= cache
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Timing difference
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Rowhammer

DRAM bank

1 1 1 1 1 1 1 1 1 1 1 1 1 1

1 1 1 1 1 1 1 1 1 1 1 1 1 1

1 1 1 1 1 1 1 1 1 1 1 1 1 1

1 1 1 1 1 1 1 1 1 1 1 1 1 1

. . .

1 1 1 1 1 1 1 1 1 1 1 1 1 1

row buffer

activate

row buffer

copy

activate

row buffer

copy

1 0 1 1 1 1 1 0 1 0 1 1 1 1

bit flips in row 2!

→
Cells leak faster upon proximate

accesses → Rowhammer
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How widespread is the issue?

� 85% affected (estimation 2014)

� 52% affected (estimation 2015)

� First believed to be safe

� We showed bit flips in 2016

� 67% affected (estimation 2016)
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Modifying Bits

� Single bit flips allow

� modifying instructions

� breaking cryptography

� changing permissions

� crashing systems

� ...

� In software, no permissions required
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An Example

� Program containing conditional jump after password check:

je 80486c1 <check password+0x44>

� Machine code is

0x74 0x07 = 0b01110100 0b00000111

JE
0 1 1 1 0 1 0 0

JNE
0 1 1 1 0 1 0 1

JBE
0 1 1 1 0 1 1 0

JO
0 1 1 1 0 0 0 0

JL
0 1 1 1 1 1 0 0

PUSHQ
0 1 0 1 0 1 0 0

XORB
0 0 1 1 0 1 0 0

HLT
1 1 1 1 0 1 0 0

<prefix>
0 1 1 0 0 1 0 0

� One bit changed: 0b01110101 0b00000111 = 0x75 0x07 =

jne 80486c1 <check password+0x44>

� Now only wrong passwords work → demonstrated on sudo
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Future

� More attacks exploiting performance optimizations in hardware

� New variants are disclosed frequently
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Microarchitectural Data Sampling (MDS)

Transient cause Meltdown-type

Meltdown-PF

Meltdown-GP

Meltdown-MCA

Meltdown-US

Meltdown-P

Meltdown-SM-SB

Meltdown-NC-SB

Meltdown-AD

Meltdown-AVX-LP

Meltdown-US-LFB

Meltdown-US-SB

Meltdown-P-LFB

Meltdown-P-SB

Meltdown-P-LP

Meltdown-AD-LFB

Meltdown-AD-SB
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Transient-Execution Attacks

Transient cause

Spectre-type

Meltdown-type

Spectre-PHT

Spectre-BTB

Spectre-RSB

Spectre-STL

Meltdown-NM-REG

Meltdown-PF

Meltdown-BR

Meltdown-GP

Meltdown-MCA

Cross-address-space

Same-address-space

Cross-address-space

Same-address-space

Cross-address-space

Same-address-space

Meltdown-US

Meltdown-P

Meltdown-RW

Meltdown-PK-L1

Meltdown-SM-SB

Meltdown-MPX

Meltdown-BND

Meltdown-CPL-REG

Meltdown-NC-SB

Meltdown-AD

Meltdown-AVX-LP

PHT-CA-IP

PHT-CA-OP

PHT-SA-IP

PHT-SA-OP

BTB-CA-IP

BTB-CA-OP

BTB-SA-IP

BTB-SA-OP

RSB-CA-IP

RSB-CA-OP

RSB-SA-IP

RSB-SA-OP

Meltdown-US-L1

Meltdown-US-LFB

Meltdown-US-SB

Meltdown-P-L1

Meltdown-P-LFB

Meltdown-P-SB

Meltdown-P-LP

Meltdown-AD-LFB

Meltdown-AD-SB
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Transient-Execution Attacks

� Transient Execution Attacks are...

� ...a novel class of attacks

� ...extremely powerful

� ...only at the beginning

� Many optimizations introduce side channels → now exploitable
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A unique chance

A unique chance to

� rethink processor design

� grow up, like other fields (car industry, construction industry)
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Conclusion

� Optimizations in hardware often lead to side channels

� Unknown and novel side channels are likely to exist

� Next to no permissions required for attacks

� Building countermeasures is extremely hard
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More Information

� Only an overview over some attacks

� Many more side-channel attacks

� Also some defenses, especially for crypto

� Master course: Embedded Security

� Talks from our group on YouTube: “InfoSec @ TU Graz”
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