
Information Security

System Security 2 - Side Channels and Microarchitectural Attacks

November 18, 2022

Side-channel Attacks

� Safe software infrastructure does not mean safe execution

� Information leaks because of the underlying hardware

� Exploit unintentional information leakage by side-effects

Power consumption Execution time CPU caches

1

Side channels in Software

� Side channels also exist in software

� Can be used for attacks

� Usually timing differences

2

Example: PIN Comparison

� Trivial approach: Compare each digit until a difference

int check_pin(char* input) {

const char* correct = "1234";

for(int i = 0; i < 4; i++) {

if(correct[i] != input[i]) {

// digit differs , abort

return ERROR;

}

}

// PIN is correct

return OK;

}

3

Example: PIN Comparison

� Measuring the execution times for different PINs

PIN Time

0000

1000

2000

3000

· · · · · ·

� If digit is correct, next digit is checked → longer execution time

� 10 tries (maximum) to get a digit

4

Example: PIN Comparison

� Measuring the execution times for different PINs

PIN Time

1000

1100

1200

1300

· · · · · ·

� Repeat for every digit

� Longest execution time reveals correct digit

5

Example: PIN Comparison

� Maximum 10 measurements per digit

� 4-digit PIN: 40 tries

� Brute force: 10 000 tries

� Simple side channel reduces tries by factor 250

6

Example: PIN Comparison

� Many functions can be implemented with constant runtime

int check_pin(char* input) {

const char* correct = "1234";

int same = 0;

for(int i = 0; i < 4; i++) {

same |= correct[i] - input[i];

}

return (same == 0);

}

� Sometimes, there is still a side channel in the hardware

7

Architecture and Microarchitecture

� Instruction Set Architecture (ISA) is an abstract model of a

computer (x86, ARMv8, SPARC, . . .)

� Serves as the interface between hardware and software

� Microarchitecture is an actual implementation of the ISA

8

Microarchitectural Elements

� Modern CPUs contain multiple microarchitectural elements

Caches and buffer Predictor

� Transparent for the programmer

� Optimize program execution

� Timing differences → side-channel leakage

9

CPU Cache

10

Memory Access Latency

50 100 150 200 250 300 350 400

101

104

107

Access time [CPU cycles]

N
u
m
b
er

of
ac
ce
ss
es

Cache Hits Cache Misses

11

Cache hierarchy

Core 0

L1

L2

Core 1

L1

L2

Core 2

L1

L2

Core 3

L1

L2
ring bus

LLC
slice 0

LLC
slice 1

LLC
slice 2

LLC
slice 3

� L1 and L2 are private

� Last-level cache is

� divided into slices

� shared across cores

� inclusive

12

Set-associative Last-level Cache

Memory Address

Cache

Way 0 Way 1 ... Way n

6 bits11 bits

Cache Set

2048 cache sets

Cache Line

• Location in cache depends on the physical address of data

• Bits 6 to 16 determine the cache set

• A cache set has multiple ways to store the data

• A way inside a cache set is a cache line, determined by the cache replacement policy

13

Flush+Reload

14

Flush+Reload

struct shared_data [256];

[...]

return shared_data [84];

[...]

� Flush+Reload over memory locations

0 50 100 150 200 250

300

400

500

Page

A
cc
es
s
ti
m
e

[c
yc
le
s]

� Accessed index results in faster access time

15

Flush+Reload on Keystrokes

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2 2.2 2.4 2.6 2.8 3 3.2

·109

0

200

400

600

Runtime [cycles]

L
at
en
cy

[c
yc
le
s]

� Key presses trigger code execution in shared library (e.g., libgdk)

� Flush+Reload does not reveal actual key, only time difference between keys

� → Recover text with machine learning

16

A Double Fetch

string

/ p a t h / f i l e \0Xp a y l o a d \0

length length

Thread 1
strcpy(string , "/path/file\0 payload");

open(string , O_CREAT);

// <switch to kernel >

int len = strlen(string);

char* local = malloc(len + 1);

strcpy(local , string);

// <memory corruption >

Thread 2

schedule
schedule string [10] = ’X’;

18

Flush+Reload

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 1.1

·106

200

220

240

260

Runtime [cycles]

A
cc
es
s
ti
m
e
[c
yc
le
s]

Data was accessed

19

Double-fetch Detection

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

·106

200

220

240

260

Runtime [cycles]

A
cc
es
s
ti
m
e

[c
yc
le
s]

First access Second access

20

Cache-based Trigger

3 3.5 4 4.5 5 5.5 6 6.5 7

·105

200

220

240

260

Runtime [cycles]

A
cc
es
s
ti
m
e

[c
yc
le
s]

First access Modify value Second access with modified value

21

Prime+Probe

ATTACKER VICTIM

prime
access

access

ATTACKER VICTIM

prime
access

access

ATTACKER VICTIM

prime
access

access

ATTACKER VICTIM

prime
access

access

ATTACKER VICTIM

prime
access

access

Victim did not access
(fast)

Victim accessed
(slow)

vs

22

RSA

M = C
d
mod n

1 1 0 0 1 1 0 . . .

Result = CResult × Result × C

square multiply

23

Measured Trace

Raw Prime+Probe trace...

24

Measured Trace

...processed with a simple moving average...

25

Measured Trace

...allows to clearly see the bits of the exponent

1 1 1 00 1 1 1 01 1 1 00000001 000 1 0 1 00 1 1 00 1 1 01 1 1 1 1 0 1 1 1 1 0 1 000 1 00 1 1 1 0 1 000 1 1 1 0000 1 1 1

26

Covert channel

What is a covert channel?

� Two programs would like to communicate but are not allowed
to do so

� either because there is no communication channel...

� ...or the channels are monitored and programs are stopped on

communication attempts

� Use side channels and stay stealthy

27

Covert channel

28

Sending Data

Last-level cache

Cache Set #1

Cache Set #2

Cache Set #3

Cache Set #4

Cache Set #5

Cache Set #6

Cache Set #7

Cache Set #8

Sender Receiver

0

10

01

0

1

0

0

01

evict

evict

evict

evict

measure

measure

measure

measure

measure

measure

measure

measure

evict

evict

evict

evict

evict

evict

evict

evict

0

10

01

0

1

0

0

01

29

Other Microarchitectural Elements

� Multiple other elements with timing differences

� TLB

� DRAM

� Memory Bus

� Execution Units

� ...

� Many side-channel attacks exploiting them

31

Meta Data

� So far, only memory accesses

� Meta data, no actual data

� Sufficient to deduce data...

� ...if memory accesses are secret dependent

32

Building Block

� Side channels can be part of an attack

� Also for conventional memory corruption attacks

� Side channels as building blocks

� Required information (e.g., break ASLR)

� Additional information (e.g., length of password)

� Covertly transmit information

� Transient-execution attacks

33

Meltdown

� Meltdown is a CPU vulnerabilities

� Discovered in 2017 by multiple independent teams

� Allows breaking the process isolation

� Side-channel attack is a core building block

34

Hardware Isolation

� Kernel is isolated from user

space

� This isolation is a combination

of hardware and software

� User applications cannot access

anything from the kernel

� There is only a well-defined

interface → syscalls

Userspace Kernelspace

Applications
Operating
System Memory

35

In-Order Execution

IF ID EX MEM WB

IF ID EX MEM WB

IF ID EX MEM WB

IF ID EX MEM WB

IF ID EX MEM WB

� Instructions are...

� fetched (IF) from the L1 Instruction Cache

� decoded (ID)

� executed (EX) by execution units

� Memory access is performed (MEM)

� Architectural register file is updated (WB)

36

In-Order Execution

� Instructions are executed in-order

� Pipeline stalls when stages are not ready

� If data is not cached, we need to wait

37

Out-of-order Execution

int width = 10, height = 5;

float diagonal = sqrt(width * width

+ height * height);

int area = width * height;

printf("Area %d x %d = %d\n", width , height , area);

38

Out-of-Order Execution
E

xe
cu

tio
n

E
ng

in
e

Reorder buffer

µOP µOP µOP µOP µOP µOP µOP µOP

Scheduler

Execution Units

A
L

U
,A

E
S,

..
.

A
L

U
,F

M
A

,.
..

A
L

U
,V

ec
t,

..
.

A
L

U
,B

ra
nc

h

L
oa

d
da

ta

L
oa

d
da

ta

St
or

e
da

ta

A
G

U

µOP µOP µOP µOP µOP µOP µOP µOP

CDB

M
em

or
y

Su
bs

ys
te

m Load Buffer Store Buffer

L1 Data Cache
DTLB STLB

L2 Cache

Fr
on

te
nd

Allocation Queue

µOP µOP µOP µOP

MUX

4-Way Decode

µOP µOP µOP µOP

Instruction Queue

Instruction Fetch & PreDecode

µOP Cache

µOPs

Branch
Predictor

L1 Instruction Cache
ITLB

Instructions are

� fetched and decoded in the front-end

� dispatched to the backend

� processed by individual execution units

39

Out-of-Order Execution
E

xe
cu

tio
n

E
ng

in
e

Reorder buffer

µOP µOP µOP µOP µOP µOP µOP µOP

Scheduler

Execution Units

A
L

U
,A

E
S,

..
.

A
L

U
,F

M
A

,.
..

A
L

U
,V

ec
t,

..
.

A
L

U
,B

ra
nc

h

L
oa

d
da

ta

L
oa

d
da

ta

St
or

e
da

ta

A
G

U

µOP µOP µOP µOP µOP µOP µOP µOP

CDB

M
em

or
y

Su
bs

ys
te

m Load Buffer Store Buffer

L1 Data Cache
DTLB STLB

L2 Cache

Fr
on

te
nd

Allocation Queue

µOP µOP µOP µOP

MUX

4-Way Decode

µOP µOP µOP µOP

Instruction Queue

Instruction Fetch & PreDecode

µOP Cache

µOPs

Branch
Predictor

L1 Instruction Cache
ITLB

Instructions

� are executed out-of-order

� wait until their dependencies are ready

� Later instructions might execute prior earlier instructions

� retire in-order

� State becomes architecturally visible

� Exceptions are checked during retirement

� Flush pipeline and recover state

40

The state does not become architecturally visible but . . .

Building the Code

� New code

(volatile char) 0;

array [84 * 4096] = 0;

� volatile because compiler was not happy

warning : s ta tement wi th no e f f e c t [=Wunused=v a l u e]

*(char *) 0 ;

� Static code analyzer is still not happy

warning : De r e f e r e n c e o f n u l l p o i n t e r

*(v o l a t i l e char *) 0 ;

41

Building the Code

� Flush+Reload over all pages of the array

0 50 100 150 200 250

300

400

500

Page
A
cc
es
s
ti
m
e

[c
yc
le
s]

� “Unreachable” code line was actually executed

� Exception was only thrown afterwards

42

Building the Code

� Out-of-order instructions leave microarchitectural traces

� We can see them for example in the cache

� Give such instructions a name: transient instructions

� We can indirectly observe the execution of transient instructions

43

Loading an address

44

Building the Code

� Add another layer of indirection to test

char data = *(char*) 0xffffffff81a000e0;

array[data * 4096] = 0;

� Then check whether any part of array is cached

45

Building the Code

� Flush+Reload over all pages of the array

0 50 100 150 200 250

300

400

500

Page
A
cc
es
s
ti
m
e

[c
yc
le
s]

� Index of cache hit reveals data

� Permission check is in some cases not fast enough

46

Kernel Direct-Physical Map

Virtual address space

User Kernel

Physical memory

0

0 max. phys.

247 −247 −1

dir
ec
t m

ap

47

Meltdown

� Using out-of-order execution, we can read data at any address

� Index of cache hit reveals data

� Permission check is in some cases not fast enough

� Entire physical memory is typically accessible through kernel space

48

Generalization

� Meltdown is a whole category of vulnerabilities

� Not only the user-accessible check

� Looking closer at the check...

49

Paging

� CPU uses virtual address spaces to isolate processes

� Physical memory is organized in page frames

� Virtual memory pages are mapped to page frames using

page tables

50

Address Translation on x86-64

PML4I (9 b) PDPTI (9 b) PDI (9 b) PTI (9 b) Offset (12 b)

48-bit virtual address

CR3
PML4

PML4E 0

PML4E 1
···

#PML4I
···

PML4E 511

PDPT

PDPTE 0

PDPTE 1
···

#PDPTI
···

PDPTE 511

Page Directory

PDE 0

PDE 1
···

PDE #PDI
···

PDE 511

Page Table

PTE 0

PTE 1
···

PTE #PTI
···

PTE 511

4 KiB Page

Byte 0

Byte 1
···

Offset
···

Byte 4095

51

Page Table Entry

P RW US WT UC R D S G Ignored

Physical Page Number
Ignored X

� User/Supervisor bit defines in which privilege level the page can be accessed

52

Page Table Entry

P RW US WT UC R D S G Ignored

Physical Page Number
Ignored X

� Present bit is the next obvious bit

53

Foreshadow-NG

� An even worse bug → Foreshadow-NG/L1TF

� Exploitable from VMs

� Allows leaking data from the L1 cache

� Same mechanism as Meltdown

� Just a different bit in the PTE

54

Foreshadow-NG

Page Table

PTE 0

PTE 1
···

PTE #PTI
···

PTE 511

presentnot present

L1 lookup

with

virtual address

Guest Physical

to Host Physical
Physical

Page

L1 lookup

with
physical address

L1

Cache

55

Foreshadow-NG Fix

� KAISER/KPTI/KVA does not help

� Only software workarounds

→ Flush L1 on VM entry

→ Disable HyperThreading

� Workarounds might not be complete

56

Meltdown Variants

Pagefault

Meltdown-US

Meltdown-P

Meltdown-RW

Meltdown-PK-L1

Meltdown-SM-SB

Meltdown-US-L1

Meltdown-US-LFB

Meltdown-US-SB

Meltdown-P-L1

Meltdown-P-LFB

Meltdown-P-SB

Meltdown-P-LP

57

Meltdown Root Cause

operation #n

re
ti
re

re
ti
re

operation #n+2

data dependency

data Meltdown

possibly

architectural transient execution

exception raise

time

58

Meltdown Tree

Transient cause Meltdown-type

Meltdown-NM-REG

Meltdown-PF

Meltdown-BR

Meltdown-GP

Meltdown-MCA

Meltdown-US

Meltdown-P

Meltdown-RW

Meltdown-PK-L1

Meltdown-SM-SB

Meltdown-MPX

Meltdown-BND

Meltdown-CPL-REG

Meltdown-NC-SB

Meltdown-AD

Meltdown-AVX-LP

Meltdown-US-L1

Meltdown-US-LFB

Meltdown-US-SB

Meltdown-P-L1

Meltdown-P-LFB

Meltdown-P-SB

Meltdown-P-LP

Meltdown-AD-LFB

Meltdown-AD-SB

59

Latest Meltdown Variant: ZombieLoad

� Leaks from the fill buffer

� Crosses all privilege boundaries (Kernel, VM, SGX)

� Explored microcode assists as new type of faults

� Disadvantage: minimal control over leaked data

60

Meltdown Outlook

� Meltdown is not a fully solved issue

� The tree is extensible

� More Meltdown-type issues to come

� Silicon fixes might not be complete

62

Transient-Execution Attacks

� Meltdown not the only transient-execution attacks

� Spectre is a second class of transient-execution attacks

� Instead of faults, exploit control (or data) flow predictions

63

Speculative Execution

� CPU tries to predict the future (branch predictor), . . .

� . . . based on events learned in the past

� Speculative execution of instructions

� If the prediction was correct, . . .

� . . . very fast

� otherwise: Discard results

64

Spectre-PHT (aka Spectre Variant 1)

Memory

D

A

T

A

K

E

Y
· · ·

data[0]

data[1]

data[2]

data[3]

SpeculateExecute

ExecuteSpeculate

Shared Memory

A B
C D E
F G H
I J K
L M N
O P Q
R S T
U V W
X Y Z

D

D

A

A

T

TK K

index = 01234index = 01234 if (index < 4)

glyph[data[index]] {}

the
n else

DATAK

65

Spectre Root Cause

operation #n

re
ti
re

prediction

re
ti
re

operation #n+2

re
ti
re

p
re
d
ic
t

C
F
/
D
F

possibly

architectural transient execution

flush pipeline
on wrong
prediction

time

66

Spectre Root Cause

� Many predictors in modern CPUs

� Branch taken/not taken (PHT)

� Call/Jump destination (BTB)

� Function return destination (RSB)

� Load matches previous store (STL)

� Most are even shared among processes

67

Spectre Variants

Transient

cause?

Spectre-type

microarchitec-

tural buffer
Spectre-PHT

Spectre-BTB

Spectre-RSB

Spectre-STL

mistraining

strategy Cross-address-space

Same-address-space

PHT-CA-IP

PHT-CA-OP

PHT-SA-IP

PHT-SA-OP

in-place (IP) vs., out-of-place (OP)

Cross-address-space

Same-address-space

BTB-CA-IP

BTB-CA-OP

BTB-SA-IP

BTB-SA-OP

Cross-address-space

Same-address-space

RSB-CA-IP

RSB-CA-OP

RSB-SA-IP

RSB-SA-OP

prediction

68

Spectre Fix

� Spectre is not a bug

� It is an useful optimization

→ Cannot simply fix it (as with Meltdown)

� Workarounds for critical code parts

69

Spectre Mitigations

� Current mitigations are either incomplete or cost performance

→ More research required

� Both on attacks and defenses

→ Efficient defenses only possible when attacks are known

70

Leaking Data

� Side channels so far

� leak meta data

� covertly transmit data

� As a building block

� leak data

� What about modifying data?

71

DRAM organization

channel 0

channel 1

back of DIMM: rank 1

front of DIMM:

rank 0

chip

72

DRAM organization

chip

bank 0

row 0

row 1

row 2

. . .

row 32767

row buffer

64k cells
1 capacitor,

1 transistor each

73

How reading from DRAM works

DRAM bank

1 1 1 1 1 1 1 1 1 1 1 1 1 1

1 1 1 1 1 1 1 1 1 1 1 1 1 1

1 1 1 1 1 1 1 1 1 1 1 1 1 1

1 1 1 1 1 1 1 1 1 1 1 1 1 1

. . .

1 1 1 1 1 1 1 1 1 1 1 1 1 1

row buffer

CPU wants to access row 1

→ row 1 activated

→ row 1 copied to row buffer

activate

row buffer

1 1 1 1 1 1 1 1 1 1 1 1 1 1

copy

return

CPU wants to access row 2

→ row 2 activated

→ row 2 copied to row bufferactivate

row buffer

1 1 1 1 1 1 1 1 1 1 1 1 1 1

copy
return

→ slow (row conflict)

CPU wants to access row 2—again

→ row 2 already in row buffer

return

→ fast (row hit)

row buffer= cache

74

Timing difference

210 220 230 240 250 260 270
0

20

40

60

80

100

Clock cycles

F
re
q
u
en
cy

Row hits
Row misses

75

Rowhammer

DRAM bank

1 1 1 1 1 1 1 1 1 1 1 1 1 1

1 1 1 1 1 1 1 1 1 1 1 1 1 1

1 1 1 1 1 1 1 1 1 1 1 1 1 1

1 1 1 1 1 1 1 1 1 1 1 1 1 1

. . .

1 1 1 1 1 1 1 1 1 1 1 1 1 1

row buffer

activate

row buffer

copy

activate

row buffer

copy

1 0 1 1 1 1 1 0 1 0 1 1 1 1

bit flips in row 2!

→
Cells leak faster upon proximate

accesses → Rowhammer

76

How widespread is the issue?

� 85% affected (estimation 2014)

� 52% affected (estimation 2015)

� First believed to be safe

� We showed bit flips in 2016

� 67% affected (estimation 2016)

77

Modifying Bits

� Single bit flips allow

� modifying instructions

� breaking cryptography

� changing permissions

� crashing systems

� ...

� In software, no permissions required

78

An Example

� Program containing conditional jump after password check:

je 80486c1 <check password+0x44>

� Machine code is

0x74 0x07 = 0b01110100 0b00000111

JE
0 1 1 1 0 1 0 0

JNE
0 1 1 1 0 1 0 1

JBE
0 1 1 1 0 1 1 0

JO
0 1 1 1 0 0 0 0

JL
0 1 1 1 1 1 0 0

PUSHQ
0 1 0 1 0 1 0 0

XORB
0 0 1 1 0 1 0 0

HLT
1 1 1 1 0 1 0 0

<prefix>
0 1 1 0 0 1 0 0

� One bit changed: 0b01110101 0b00000111 = 0x75 0x07 =

jne 80486c1 <check password+0x44>

� Now only wrong passwords work → demonstrated on sudo

79

Future

� More attacks exploiting performance optimizations in hardware

� New variants are disclosed frequently

80

Microarchitectural Data Sampling (MDS)

Transient cause Meltdown-type

Meltdown-PF

Meltdown-GP

Meltdown-MCA

Meltdown-US

Meltdown-P

Meltdown-SM-SB

Meltdown-NC-SB

Meltdown-AD

Meltdown-AVX-LP

Meltdown-US-LFB

Meltdown-US-SB

Meltdown-P-LFB

Meltdown-P-SB

Meltdown-P-LP

Meltdown-AD-LFB

Meltdown-AD-SB

81

Transient-Execution Attacks

Transient cause

Spectre-type

Meltdown-type

Spectre-PHT

Spectre-BTB

Spectre-RSB

Spectre-STL

Meltdown-NM-REG

Meltdown-PF

Meltdown-BR

Meltdown-GP

Meltdown-MCA

Cross-address-space

Same-address-space

Cross-address-space

Same-address-space

Cross-address-space

Same-address-space

Meltdown-US

Meltdown-P

Meltdown-RW

Meltdown-PK-L1

Meltdown-SM-SB

Meltdown-MPX

Meltdown-BND

Meltdown-CPL-REG

Meltdown-NC-SB

Meltdown-AD

Meltdown-AVX-LP

PHT-CA-IP

PHT-CA-OP

PHT-SA-IP

PHT-SA-OP

BTB-CA-IP

BTB-CA-OP

BTB-SA-IP

BTB-SA-OP

RSB-CA-IP

RSB-CA-OP

RSB-SA-IP

RSB-SA-OP

Meltdown-US-L1

Meltdown-US-LFB

Meltdown-US-SB

Meltdown-P-L1

Meltdown-P-LFB

Meltdown-P-SB

Meltdown-P-LP

Meltdown-AD-LFB

Meltdown-AD-SB

82

Transient-Execution Attacks

� Transient Execution Attacks are...

� ...a novel class of attacks

� ...extremely powerful

� ...only at the beginning

� Many optimizations introduce side channels → now exploitable

83

A unique chance

A unique chance to

� rethink processor design

� grow up, like other fields (car industry, construction industry)

84

Conclusion

� Optimizations in hardware often lead to side channels

� Unknown and novel side channels are likely to exist

� Next to no permissions required for attacks

� Building countermeasures is extremely hard

85

More Information

� Only an overview over some attacks

� Many more side-channel attacks

� Also some defenses, especially for crypto

� Master course: Embedded Security

� Talks from our group on YouTube: “InfoSec @ TU Graz”

86

