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Side-channel Attacks

e Safe software infrastructure does not mean safe execution

e Information leaks because of the underlying hardware

| e Exploit unintentional information leakage by side-effects
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Side channels in Software

e Side channels also exist in software
e Can be used for attacks

e Usually timing differences



Example: PIN Comparison

e Trivial approach: Compare each digit until a difference

int check_pin(char* input) {
const char* correct = "1234";
for(int i = 0; i < 4; i++) {
if (correct[i] !'= input([i]) {
// digit differs, abort
return ERROR;

}
// PIN 4s correct

return 0K;



Enter PIN:

00:00:00:051¢







Example: PIN Comparison

e Measuring the execution times for different PINs

PIN Time
0000 E=T

1000 [
2000 E=3

3000 E=3

o If digit is correct, next digit is checked — longer execution time

e 10 tries (maximum) to get a digit



Example: PIN Comparison

e Measuring the execution times for different PINs

PIN Time
1000 T

1100
1200 [T
1300 [

e Repeat for every digit

e Longest execution time reveals correct digit



Example: PIN Comparison

Maximum 10 measurements per digit
4-digit PIN: 40 tries
e Brute force: 10000 tries

Simple side channel reduces tries by factor 250



Example: PIN Comparison

e Many functions can be implemented with constant runtime

int check_pin(char* input) {

const char* correct = "1234";
int same = 0;
for(int i = 0; i < 4; i++) {
same |= correct[i] - input([i];
}
return (same == 0);

o Sometimes, there is still a side channel in the hardware



Architecture and Microarchitecture

e Instruction Set Architecture (ISA) is an abstract model of a
computer (x86, ARMv8, SPARC, ...)

e Serves as the interface between hardware and software

e Microarchitecture is an actual implementation of the ISA
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Microarchitectural Elements

e Modern CPUs contain multiple microarchitectural elements
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Caches and buffer Predictor

e Transparent for the programmer
e Optimize program execution

e Timing differences — side-channel leakage



CPU Cache

DRAM access,

( slow
Cache miss

printf("%d", 1i);”
printf("%d", 1i);

\ Cache hit
No DRAM access,

much faster

4—/

Response







Cache hierarchy

ring bus

./

Core 0 Core 1 Core 2 Core 3
[ [ [ [
L1 ‘ ‘ L1 ‘ ‘ L1 ‘ ‘ L1
[ [ [ [
L2 ‘ ‘ L2 ‘ ‘ L2 ‘ ‘ L2
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LLC LLC LLC LLC
slice 0 slice 1 slice 2 slice 3

e L1 and L2 are private
e |ast-level cache is

e divided into slices
e shared across cores

e inclusive



Set-associative Last-level Cache

Cache

Memory Address Way 0 Way 1 Way n

| 11 bits | 6 bits

2048 cache sets

Cache et

Cache Line \/7

e Location in cache depends on the physical address of data

e Bits 6 to 16 determine the cache set
e A cache set has multiple ways to store the data

e A way inside a cache set is a cache line, determined by the cache replacement policy



Flush+Reload

Shared Memory
ATTACKER VICTIM

access

\

O—

Victim accessed Victim did not access
(fast) (slow)



Flush+Reload

struct shared_data[256];

[...]
return shared_data[84];
[...]

e Flush+Reload over memory locations
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Access time
[cycles]
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e Accessed index results in faster access time



Flush+Reload on Keystrokes
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200
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Runtime [cycles] .10°

°
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e Key presses trigger code execution in shared library (e.g., 1ibgdk)

e Flush+Reload does not reveal actual key, only time difference between keys

e — Recover text with machine learning



bagger> dog Enclave/encll



A Double Fetch

string

/plajtin|/[fli]1]e\0Xpla]y|I]oja d[\0

length length

Thread 1 Thread 2
strcpy (string, "/path/file\Opayload");
open(string, O_CREAT);

// <switch to kernel>

int len = strlen(string);

char* local = malloc(len + 1); sch
_ _SChedule . _ v
hedule- -, string [10] = ’X7;
strcpy (local, string); RS

<«

// <memory corruption>



Flush+Reload
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Double-fetch Detection

Access time
[cycles]

220 |

Second access

| L i i
+ t + +

200 - - - - - -
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Runtime [cycles] .10°
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Prime+Probe

ATTACKER

S —r
access

\

VICTIM

O— (N«

Victim did not access Victim accessed
(fast) (slow)




’ Result ‘ = | Result | X ’ Result ‘ X ’ C

square mulrciply



Measured Trace

Raw Prime-+Probe trace...




Measured Trace

...processed with a simple moving average...




Measured Trace

...allows to clearly see the bits of the exponent
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Intel claiming it is

Side-channel Researcher
out of scope
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Covert channel

What is a covert channel?

e Two programs would like to communicate but are not allowed
to do so
e either because there is no communication channel...
e ...or the channels are monitored and programs are stopped on
communication attempts

e Use side channels and stay stealthy



Covert channel
2




Sending Data
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Other Microarchitectural Elements

e Multiple other elements with timing differences
e TLB
¢ DRAM

Memory Bus

e Execution Units

e Many side-channel attacks exploiting them



Meta Data

O o So far, only memory accesses

°
ooo Meta data, no actual data

0B

Sufficient to deduce data...

e ...if memory accesses are secret dependent



Building Block

e Side channels can be part of an attack
e Also for conventional memory corruption attacks

e Side channels as building blocks
e Required information (e.g., break ASLR)
e Additional information (e.g., length of password)
e Covertly transmit information
e Transient-execution attacks




Meltdown is a CPU vulnerabilities

&

Discovered in 2017 by multiple independent teams

Allows breaking the process isolation

Side-channel attack is a core building block



Hardware Isolation

Kernel is isolated from user
space

This isolation is a combination
of hardware and software

User applications cannot access
anything from the kernel

There is only a well-defined
interface — syscalls

@ Userspace

>

Applications

Kernelspace

Operating
System

Memory



In-Order Execution

IF | ID | EX [MEM| WB
IF | ID | EX [MEM| WB
IF | ID | EX MEM| WB
IF | ID | EX [MEM| WB
IF | ID | EX [MEM| WB

e Instructions are...

e fetched (IF) from the L1 Instruction Cache
e decoded (ID)
e executed (EX) by execution units

e Memory access is performed (MEM)

e Architectural register file is updated (WB)



In-Order Execution

e Instructions are executed in-order
e Pipeline stalls when stages are not ready

e If data is not cached, we need to wait
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Out-of-order Execution

Parallelize
S,

int width = 10, height = 5;

+ height * height);
int area = width * height;

8
[~
<
ke
5 float diagonal = sqrt(width * width
Q
)]
Q

<printf("Area %d x %d = %d\n", width, height, area);



Out-of-Order Execution

L1 Instruction Cache [

Branch Instruction Fetch & PreDecode
2 Predictor
5 Instruction Queue.
= T T o [ [
\ Aoaion Qo \ .
EREREEE Instructions are
£ £ £ ¥
coB % Reorder buffer ‘ .
I [ i i e fetched and decoded in the front-end

i Scheduler ‘

e dispatched to the backend

Execution Engine
IIr

e processed by individual execution units

Execution Units

L1 Data Cache

STLB +

Memory

L2 Cache —




Out-of-Order Execution

L1 Instruction Cache [

= Branch Instruction Fetch & PreDecode
] Predictor .
'ﬂE) Instruction Queue |nStrUCtI0nS
2 WO Cache, 4-Way Decode
= I Lo o [ e
| ‘ e are executed out-of-order
Allocation Queue

= | e wait until their dependencies are ready

(2] Reorder buffer
L= bl I o 1o e Later instructions might execute prior earlier instructions
i Scheduler ‘ g p

e retire in-order

Execution Engine
IIr

e State becomes architecturally visible

Execution Units

e Exceptions are checked during retirement

L1 Data Cache oD

L2 Cache —

e Flush pipeline and recover state

Memory




The state does not become architecturally visible but ...



Building the Code

e New code

*(volatile charx) O0;
array [84 * 4096] = O;

o
o e volatile because compiler was not happy
warning: statement with no effect [—Wunused—value]
x(charx)0;

e Static code analyzer is still not happy

warning: Dereference of null pointer
x(volatile charx)O0;



Building the Code
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e Flush+Reload over all pages of the array

500
400
300

0 50 100 150 200 250
Page

e “Unreachable” code line was actually executed

e Exception was only thrown afterwards



Building the Code

O e OQut-of-order instructions leave microarchitectural traces

° & o .
o ‘@ -0 e We can see them for example in the cache
e Give such instructions a name: transient instructions
" e We can indirectly observe the execution of transient instructions






Building the Code

e Add another layer of indirection to test

char data = *(char*) Oxffffffff81a000e0;
¢ array [data * 4096] = 0;

e Then check whether any part of array is cached



Building the Code

e Flush+Reload over all pages of the array

Access time
[cycles]

Page

e Index of cache hit reveals data

e Permission check is in some cases not fast enough



Kernel Direct-Physical Map

Physical memory

0 247 _ 047 —1
User Kernel

Virtual address space



Using out-of-order execution, we can read data at any address

Index of cache hit reveals data

e Permission check is in some cases not fast enough

Entire physical memory is typically accessible through kernel space
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There are no busgs,
just happy little accidents




Generalization

e Meltdown is a whole category of vulnerabilities
e Not only the user-accessible check

e Looking closer at the check...



e CPU uses virtual address spaces to isolate processes

e Physical memory is organized in page frames

e Virtual memory pages are mapped to page frames using
page tables



Address Translation on x86-64

PML4
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: PDPT
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Page Table Entry
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e User/Supervisor bit defines in which privilege level the page can be accessed



Page Table Entry

P RWIUSIWTIUC| R|D|S |G Ignored

O
7

Py Number
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Q.
0
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age

Ignored X

e Present bit is the next obvious bit



Foreshadow-NG

e An even worse bug — Foreshadow-NG/L1TF
= Exploitable from VMs

Allows leaking data from the L1 cache
Same mechanism as Meltdown
Just a different bit in the PTE



Foreshadow-NG

Page Table
PTE O
PTE 1
: a¢nt Physical
PTE ZpT1 L resestnt Guest Physica S| Physical
; to Host Physical
: Page
PTE 511
L1 lookup R L1 lookup
. ? L1 < .
with Cache with
virtual address physical address




Foreshadow-NG Fix

e KAISER/KPTI/KVA does not help
e Only software workarounds

— Flush L1 on VM entry
— Disable HyperThreading

e Workarounds might not be complete



Meltdown Variants

Meltdown-US-L1 )
Meltdown-US-LFB )
Meltdown-US-SB )

Meltdown-P-L1 )
( Pagefault Meltdown-P-LFB )

Meltdown-US

Meltdown-P
Meltdown-P-SB )

Meltdown-RW
Meltdown-P-LP )
Meltdown-PK-L1

Meltdown-SM-SB )




Meltdown Root Cause

operation #n

retire

exception raise

(0]
data Mg Vo |

.
: data dependency
|
1
1
1
1

operation #rY+2

possibly
architectural

transient execution

y

time



YOU GET A FAULT

SWANDYOU GET A FAULTA
~ EVERYONE GETS AFAULT




Meltdown-US-L1
(Meltdow".US-LFB)
Meltdown-US-SB

Meltdown-US
Meltdown-P-L1
) Mol oW EREERE
< Meltdown-P-LP

Meltdown Tree

Meltdown-P

Meltdown-RW
Meltdown-PK-L1
Meltdown-SM-SB

Meltdown-NM-REG
Meltdown-PF

Meltdown-type

Meltd CRERES
< Meltdown-NC-SB

Meltdown-AD
Meltdown-AVX-LP

S

Meltdown-AD-LFB
=i 2555

Meltdown-GP

Meltdown-MCA

( Transient cause )




Latest Meltdown Variant: ZombielLoad

Leaks from the fill buffer

Crosses all privilege boundaries (Kernel, VM, SGX)

Explored microcode assists as new type of faults

Disadvantage: minimal control over leaked data




dhp /tmp/zombieload % []




Meltdown Outlook

Meltdown is not a fully solved issue

The tree is extensible

I

More Meltdown-type issues to come

Silicon fixes might not be complete



Transient-Execution Attacks

e Meltdown not the only transient-execution attacks

e Spectre is a second class of transient-execution attacks

e Instead of faults, exploit control (or data) flow predictions



Speculative Execution

e CPU tries to predict the future (branch predictor), ...

e ...based on events learned in the past

e Speculative execution of instructions

e If the prediction was correct, ...

e ... very fast
e otherwise: Discard results






Spectre-PHT (aka Spectre Variant 1)
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Spectre Root Cause

y

()
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Spectre Root Cause

A e Many predictors in modern CPUs

¢ b Branch taken/not taken (PHT)

Call/Jump destination (BTB)

Function return destination (RSB)
Load matches previous store (STL)

e Most are even shared among processes



Spectre Variant

microarchitec-
tural buffer

Spectre-type

prediction

Transient
cause?

in-place (IP) vs., out-of-place (OP)

mistraining
strategy
Same-address-space

RSB-CA-IP
RSB-CA-OP
RSB-SA-IP

RSB-SA-OP



Spectre Fix

e Spectre is not a bug
e |t is an useful optimization
— Cannot simply fix it (as with Meltdown)

e Workarounds for critical code parts



Linux 4.19.4 & 4.14.83 Released With STIBP Code
Dropped

Written by Michael Larabel in Linux Kernel on 24 November 2018 at 09:00 AM EST. 6 Comments

On Friday marked the release of the Linux 4.19.4 kernel as well as
4.14.83 and 4.9.139.

Greg Kroah-Hartman issued this latest round of stable point releases as
basic maintenance updates. While these point releases don't tend to be
too notable and generally go unmentioned on Phoronix, this round is
worth pointing out since 4.19.4 and 4.14.83 are the releases that end up reverting the
STIBP behavior that applied Single Thread Indirect Branch Predictors to all processes on
supported systems. That is what was introduced in Linux 4.20 and then back-ported to
the 4.19/4.14 LTS branches, which in turn hurt the performance a lot. So for now the
code is removed.

As covered yesterday, there is improved STIBP code on the way for Linux 4.20 that by
default just apply STIBP to SECCOMP threads and processes requesting it via prctl() but
otherwise is off by default (that behavior can also be changed via kernel parameters).




Spectre Mitigations

e Current mitigations are either incomplete or cost performance
— More research required

e Both on attacks and defenses

— Efficient defenses only possible when attacks are known



Leaking Data

e Side channels so far

e leak meta data

e covertly transmit data
ll| II e As a building block
e leak data

e What about modifying data?



DRAM organization

back of DIMM: rank 1

front of DIMM:
rank 0




DRAM organization

chip

row 0

row 1

row 2

row 32767

row buffer

64k cells
1 capacitor,

1 transistor each



How reading from DRAM works

activate

activate

DRAM bank

11111111111111

11111111111111

11111111111111

11111111111111

11111111111111

row buffer

CPU wants to access row 2—again
= row 2 abigedyeidh row buffer
— fovi Proophat)to row buffer

— slow (row conflict
row buffer = cache

copy
opy



Timing difference

100

80 M B Row hits | |

[ Row misses
60 [ =

20 H .
[ =

I | [
210 220 230 240 250 260 270
Clock cycles

Frequency




Rowhammer

DRAM bank
11111111111111 bit flips in row 2!
activate 11111111111111
10111110101111 :
activate

11111111111111

opy Cells leak faster upon proximate

11111111111111 cqpy

accesses — Rowhammer

row buffer




How widespread is the issue?

e 85% affected (estimation 2014)
e 52% affected (estimation 2015)

e First believed to be safe
e We showed bit flips in 2016
e 67% affected (estimation 2016)




Modifying Bits

e Single bit flips allow

modifying instructions

P

breaking cryptography
e changing permissions

e crashing systems

e In software, no permissions required



An Example

e Program containing conditional jump after password check:
je 80486¢c1l <check _password+0x44>

e Machine code is
0x74 0x07 = 0b01110100 0Ob0O0O000111

JE < (PR >

L N O A

e One bit changed: 0001110101 0b00000111 = 0x75 0x07 =
jne 80486cl <check_password+0x44>

¢ Now only wrong passwords work — demonstrated on sudo



J e More attacks exploiting performance optimizations in hardware

e New variants are disclosed frequently



Microarchitectural Data Sampling (MDS)

Meltdown-US-LFB
Meltdown-US-SB

Meltdown-US

Meltdown-PF

Meltdown-P
Meltdown-SM-SB

Meltdown-NC-SB

Meltdown-AD
Meltdown-AVX-LP

Meltdown-P-SB

Ei Meltdown-P-LFB
Meltdown-P-LP

( Transient cause )—)C Meltdown-type

Meltdown-GP

Meltdown-AD-LFB

Meltdown-MCA Meltdown-AD-SB




Transient-Execution Attacks

PHT_CAIP

—<
Z PHT-CA-OP

Spectre PHT

>

PHT-SA-OP
—

BTB.CAOP
~ BIBSAIP

BTB.-SA OP

Same-address space

RSB-CA 1P

Al RSB-CA-OP

—<
L RSB-SA-OP
I

Meltdown AD-LFB

Meltdown-MCA Meltdown-AD-SB

Meltdown AD

82



Transient-Execution Attacks

o . o e Transient Execution Attacks are...

e = e ...a novel class of attacks
o ...extremely powerful
e ...only at the beginning

e Many optimizations introduce side channels — now exploitable



A unique chance

A unique chance to
e rethink processor design

e grow up, like other fields (car industry, construction industry)




Conclusion

Optimizations in hardware often lead to side channels
Unknown and novel side channels are likely to exist
Next to no permissions required for attacks

Building countermeasures is extremely hard



More Information

"I III I" e Only an overview over some attacks
.1 -r. y
e { } — e Many more side-channel attacks
G g .
e Also some defenses, especially for crypto
oF 1, p y yp
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Master course: Embedded Security

Talks from our group on YouTube: “InfoSec @ TU Graz"










