
Information Security

System Security 1 - Memory Safety

November 11, 2022

Memory Safety

Memory safety - Wikipedia

Memory safety is a concern in software development that aims to avoid software bugs

that cause security vulnerabilities dealing with random-access memory (RAM) access,

such as buffer overflows and dangling pointers.

1

Memory Safety - More Details

A program execution is memory safe if the following things do not occur:

� Access errors

� Buffer overflow/over-read

� Invalid pointer

� Race condition

� Use after free

� Uninitialized variables

� Null pointer access

� Uninitialized pointer access

� Memory leaks

� Stack/heap overflow

� Invalid free

� Unwanted aliasing

2

Memory Safety Violation

Two types of memory safety violation

Spatial violation: memory access is out of object’s bounds

� buffer overflow

� out-of-bounds reads

� null pointer dereference

Temporal violation: memory access refers to an invalid object

� use after free

� double free

� use of uninitialized memory

3

Motivation

The complexer the programs, the more bugs

2002 2004 2006 2008 2010 2012 2014 2016

0

200

400

600

800

2 2 3 21
91 95 128

188

342 351
423

366
420

749 717

Year

M
em

or
y
C
or
ru
p
ti
on

V
u
ln
er
ab
ili
ti
es

1

1Source: http://www.cvedetails.com/vulnerabilities-by-types.php

4

CVE: Common Vulnerabilities and Exposures - publicly known information security vulnerabilities

http://www.cvedetails.com/vulnerabilities-by-types.php

Red Team vs Blue Team

� There are two views on memory safety:

� Attackers try to violate memory safety

� Defenders try to ensure memory safety

� Attackers and defenders are often seen as teams in a “security war game”

� The Red Team tries to find security problems and mount attacks

� The Blue Team tries to protect software and defend against attacks

5

Red Team vs Blue Team

� The Red Team are not (only) criminals, their work is

essential for the Blue Team

� Blue Team develops defenses based on Red Team

attacks

� Red Team breaks them again

Ñ More secure software and better defenses

� Ultimate goal: memory safe programs

6

Red Team aka Attacks

Attacks

What is an Exploit?

� What is an exploit?

� “a software tool designed to take advantage of a flaw in a

computer system” (Oxford)

� “[...] cause unintended or unanticipated behavior to occur on

computer software” (Wikipedia)

� “If Achilles’s heel was his vulnerability in the Iliad, then Paris’s

poison tipped arrow was the exploit. ” (Kaspersky)

Ñ Quite fuzzy

7

What is a “normal” program?2

� Programs: machines solving a certain problem(?)

� Ideally, finite-state machines

� We don’t build such machines Ñ general-purpose hardware

emulating them

� Programs: emulators for finite-state machines

2Most of the following ideas are from Halvar Flake / Thomas Dullien

8

What is a “normal” program?

1

2

E:

E:

open

close

open

close

opened

closed

state

entry action

transition

transition condition

open
door

close
door

� Finite-state machines: states and transitions

� Input: changes state to different state

� Finite-state machine (FSM) solves your problem

� Many different ways to implement FSM

9

An Example: Simple Password Manager

Read PIN

correct?

Show password list

Error message

Yes

No

� Security properties for your FSM

� Security properties based on inputs and outputs

� e.g., It should be practically infeasible for an attacker to get the password list

(output) if he does not know the PIN (input)

10

Finite-state machine states vs CPU states

� We have to write an emulator for our FSM

� CPU has a lot more states than our FSM

� Every FSM state is represented by one or more CPU states

� For example, reading the PIN requires multiple CPU states

Ñ Keyboard interrups, reading keys, storing text in memory, ...

� Not every CPU state is represented in the FSM

11

CPU states

3 cases for CPU states

� Sane state: A CPU state corresponding to an FSM state

� Transitory state: A CPU state during a transition, leading to a

sane state

� Weird state: A CPU state which does not correspond to an

FSM state

12

Example continued: A Simple Password Manager

int main() {

uint32_t pin, correct = 0;

while(1) {

pin = readPIN();

if(pin * 2654435761u == 324783883u)

correct = 1;

if(correct) {

showPasswords();

break;

} else printf("\nWrong PIN!\n");

}

return 0;

}

States

CPU State: TransitorySane

State: -Read PINcorrect?Show Password List

uint32_t readPIN() {

char buffer[16];

printf("Enter PIN:\n");

gets(buffer);

if(getenv("DEBUG")) printf(buffer);

return atoi(buffer);

}

void showPasswords() {

FILE* stream;

char* l = NULL;

size_t len;

stream = fopen("passwords", "r");

if (stream == NULL) return;

while(getline(&l, &len, stream) != -1)

puts(l);

free(l);

fclose(stream);

}

13

The Weird State

� CPU emulates the FSM

Ñ Should only be in sane or tranistory state

� How can the CPU enter the weird state?

� Programming mistakes

� Broken hardware (e.g., bit flips in memory)

� Hardware bugs (e.g., CPU bugs)

� ...

� Program does not know it is in weird state

14

Running in the Weird State

� Program continues executing

� Transitions might still be applied Ñ on a weird state instead of

a sane state

� Usually transforms one weird state into another weird state

� Weird machine, with many weird states

� We can “program” the weird machine to do something different

than the original FSM

15

Programming the Weird Machine

� Write program using code Ñ translated into instructions executed by the CPU

� To program a device we have to generate instructions

16

Instructions as Program

� Get rid of the mindset that we require code for programming

� Applications accept input

� Does different things depending on input

Ñ Input programs the application

� Fine if input only leads from one sane state to another sane

state

17

Instructions as Program in Weird States

� If application is in weird state and programmed using input...

� ...the attacker is controlling your computer

� An abstract definition of exploitation

18

Exploitation

Exploitation: Process starting in a sane state of an FSM

1. Setup: choose the right sane state which “allows” to get to a

weird state

2. Instantiation: transition from sane state to weird state

3. Programming: program the weird machine

with the goal to break the security properties of the FSM

19

Back to the Example: A Simple Password Manager

� We want to enter a weird state

� Can we find a bug in the program?

� Can we abuse it to enter a weird state?

� First hint of a bug when compiling:

pwdman.c:(.text+0x2e): warning: the ‘gets’ function is dangerous

and should not be used.

Ñ Check the man page of gets

20

Where is the Bug?

� Code part where gets is used:

uint32_t readPIN() {

char buffer[16];

printf("Enter PIN:\n");

gets(buffer);

if(getenv("DEBUG")) printf(buffer);

return atoi(buffer);

}

� The buffer array has space for 16 characters

� gets reads until EOF...

21

Trigger the Bug

% ./pwdman

Enter PIN:

1234

Wrong PIN!

Enter PIN:

0123456789012345678901234567890123456789

[1] 7106 segmentation fault (core dumped) ./pwdman

pwdman[7486]: segfault at 31303938 ip 0000000031303938

sp 00000000ffffcdc0 error 14 in

libc-2.23.so[f7de2000+1b0000]

22

We are in a Weird State!

� We crash the program

� Crashing Ñ not a state in our FSM

Ñ Weird state due to a programming mistake

� #1: Why did we get into this weird state?

� #2: What is this weird state?

� #3: How can we program our weird machine to do something

useful (instead of crashing)?

23

#1: The Why

� gets reads from the user until EOF

� Everything read is stored in an array

� Arrays have a defined size

� What if we write more data into the array?

� We write into something else adjacent in memory

24

#1: The Why - Recap: Memory Layout

� What is next to the variable?

� It is a local variable, therefore it is on the stack

� Other local variables adjacent (none here)

� What else is on the stack?

25

#1: The Why - Recap: Stack

0x7FF... saved return address
saved base pointer
local variables

,

.

-

last frame

saved return address
saved base pointer
local variables

0x000... ...

,

/

.

/

-

26

#1: The Way - Overwriting the Stack

uint32_t readPIN() {

char buffer[16];

printf("Enter PIN:\n");

gets(buffer);

if(getenv("DEBUG")) printf(

buffer);

return atoi(buffer);

}

Ñ ...

Ñ IP 0x31303938
Ñ BP 0x37363534

0x33323130
0x39383736
0x35343332
0x31303938
0x37363534
0x33323130

,

/

/

/

/

/

.

/

/

/

/

/

-

buffer

,

/

/

/

/

/

.

/

/

/

/

/

-

Return, continue at 0x31303938

27

#2: The What

� We are somewhere (more specific: at address 0x31303938)

� CPU tries to execute code at this address

� Probably nothing mapped at this address Ñ pagefault

� Operating system kills application with a segmentation fault

� Weird state: CPU trying to execute code at an invalid address

28

#3: The How

� Bring the CPU in weird state by entering too many characters

� Control what the CPU executes by setting the instruction

pointer

� We want to either

� stay in a weird, but useful state, or

� go to a (useful) sane state again

� Let’s try to get to the sane state “Show Password List” first...

29

#3: The How - Go to an useful sane state

� We can let the CPU execute code at an arbitrary location

� The showPasswords function is at some location

% readelf -s pwdman | grep showPasswords

64: 08048604 121 FUNC GLOBAL DEFAULT 14 showPasswords

� PIN should look like this: ăpaddingą\x04\x86\x04\x08
� padding fills the buffer (plus saved base pointer), address overwrites the saved

instruction pointer

30

#3: The How - Break the Security Properties

echo "AAAAAAAAAAAAAAAAAAAAAAAAAAAA\x04\x86\x04\x08" | ./pwdman

Enter PIN:

root:toor

user:password1234

[1] 17074 segmentation fault (core dumped) ./pwdman

31

Summary

� We broke the security properties of the FSM

� Setup: We started in the sane state “Read PIN”

� Instantiation: Too many characters led to a weird state

� Programming: We “programmed” the weird state using the

input to move to the sane state “Show Password List”

� We have successfully developed an exploit

32

Can we do more?

� Spatial memory safety violation to overwrite data

Ñ Weird state

� Do we have to overwrite the saved instruction pointer?

� Other memory safety violations?

� Write in a more powerful “weird machine language”?

33

Do we have to overwrite the Instruction Pointer?

� No Ñ just one “trick” to get into weird state

� Controlling the control flow Ñ weird state

� More ways to change instruction pointer

Ñ function pointers, vtables, ...

� Controlling the instruction pointer is not a requirement

� Control-flow hijacking is a “category of tricks”

34

So, there is an alternative?

� Got rid of the mindset that we require code to program

� Input as a way of programming a device

� Modify data used in an FSM state (transition)

� Changing data to something not intended in the original FSM

Ñ weird state

� Assume gets bug is fixed, e.g., replaced by fgets

35

The fixed Code

uint32_t readPIN() {

char buffer[16];

printf("Enter PIN:\n");

fgets(buffer, 16, stdin);

if(getenv("DEBUG")) printf(buffer);

return atoi(buffer);

}

36

An Example (still continued): Simple Password Manager

uint32_t readPIN() {

char buffer[16];

printf("Enter PIN:\n");

fgets(buffer, 16, stdin);

if(getenv("DEBUG")) printf(buffer);

return atoi(buffer);

}

Read PIN

Show PIN

correct?

Show password list

Error message

Yes

No

� We ignored the “debug mode” before...

� One additional state in the FSM Ñ echos the input

� Security property stays the same

� It should be practically infeasible for an attacker to get the password list (output)

if he does not know the PIN (input)

37

Another Compiler Warning with -Wformat-security

� Compile with all warnings enabled (-Wextra)

� Still a warning

pwdman1.c:9:32: warning: format not a string literal and

no format arguments [-Wformat-security]

if(getenv("DEBUG")) printf(buffer);

ˆ

� What does the man page of printf say?

man 3 printf

Code such as printf(foo); often indicates a bug, since foo may contain a %

character. If foo comes from untrusted user input, it may contain %n, causing the

printf() call to write to memory and creating a security hole.

38

Wait, what?

� printf can create a security hole?

� Why can printf write to memory?

� It is supposed to print text to the standard output...

39

Re-cap: Format Strings

� We remember how to use printf:
printf("%d = 0x%x\n", 20, 20);

� Format string parameters (%d, %s, ...) convert function

parameters to strings

� What if the number of format string parameters does not

match the number of arguments?

� The function does not know

� Fetched form registers (first) and stack (afterwards)

40

Re-cap: Format Strings

� printf(user input); Ñ user input is format string

� No parameters to the function

� Input does not contain a format string parameter Ñ fine

� Format string parameter in the input Ñ output a register value

or stack value

41

Trigger the Bug

% DEBUG=1 ./pwdman1

Enter PIN:

%x %x %x %x

10 f76b55a0 f76f5858 25207825

Wrong PIN!

Enter PIN:

� Weird state - printing values from memory is not in our FSM

� How can we “program” this weird state?

42

Format Strings - Data Manipulation

� A little-known format string parameter: %n

man 3 printf

n The number of characters written so far is stored into the

integer pointed to by the corresponding argument. That

argument shall be an int *, or variant whose size matches the

(optionally) supplied integer length modifier.

� Example:

int count;

printf("Some string %n\n", &count);

printf("Wrote %d charachters\n", count);

Prints Wrote 12 characters

43

Format Strings - Data Manipulation

� If there is an address on the stack, we can write to it

� Format string is on the stack Ñ we can put any value onto

the stack

� Can be the address to write to

44

Playing around...

% echo "\x01\x02\x03\x04%x %x %x %x" | \

DEBUG=1 ./pwdman1

Enter PIN:

10 f7f945a0 f7fd4858 4030201

Wrong PIN!

Enter PIN:

% echo "\xb8\xcd\xff\xff%x %x %x %x" | \

DEBUG=1 ./pwdman1

Enter PIN:

? ? ? ? 10 f7f945a0 f7fd4858 ffffcdb8

Wrong PIN!

Enter PIN:

45

Programming the Weird State

% echo "\xb8\xcd\xff\xff%x %x %x %n" | \

DEBUG=1 ./pwdman1

Enter PIN:

? ? ? ? 10 f7f945a0 f7fd4858 root:toor

user:password1234

� With %n, we overwrote the correct variable at address

0xffffcdb8

� Programmed the weird machine using the input...

� ...to transition to sane state “Show Password List”

46

More Memory Safety Violations

� There are many different memory safety violations

� All of them can get us into a weird state

� We have only seen 2 of them, but there are a lot more

� Memory safety violations are a “bag of tricks” from which we

can take one to get into a weird state

47

More Powerful “Weird Programs”

� Our “weird machine programs” were quite simple

Ñ Jumped to a sane state of the FSM

� Instead

� Inject own code and jump to that

� Jump into the middle of a sane state

� ...

48

“Programming Languages” for the Weird Machine

For three decades

� people came up with tricks to get into weird states,

� and “programming languages” to program weird machines

1985-1989 1990-1994 1995-1999 2000-2004 2005-2009 2010-2014 2015-now

Morris Worm
(1988)

Stack Buffer
Overflow
(1996)

Return-to-libc
(1997)

Ret2libc
chaining
(2001)

Borrowed Code
Chunks
(2005)

Return-oriented-
programming

(2007)

Blind ROP
(2014)

Rowhammer
(2015)

49

 Morris - first internet worm
stack buffer by Elias Levy (aka Aleph One): "Smashing The Stack For Fun and Profit"
ret2libc by Alexander Peslyak (aka Solar Designer)
ret2libc chaining by nergal in Advanced return-into-lib(c) exploits - Phrack Magazine
borrowed code chunks by Sebastian Krahmer: x86-64 buffer overflow exploits and the borrowed code chunks exploitation technique
ROP by Hovav Shacham
BROP by Andrea Bittau: Hacking Blind
Rowhammer by Mark Seaborn and Thomas Dullien from Google

That sounds interesting, I want to learn more!

� There are many techniques and cool tricks

� Did not look at them Ñ more important to understand concept

� Theory might be boring but helps understanding the techniques

� Participate in a CTF and try it yourself

50

Fix all the things

� We got rid of gets

� We got rid of the format-string vulnerability

� We could not find any other bugs

� The FSM emulator (= our code) looks secure

51

Non-exploitable Code?

� Can we show that our code is now not exploitable?

� Not really Ñ check all weird states whether they are exploitable

� How to know which weird states are reachable?

� Depends on the attacker model Ñ what can an attacker do?

� Hard to think of attacker models not yet discovered

52

Exploitation

� Who is interested in exploitation?

Criminals

BP

Vendors Governments

53

Zero-Days for Piracy

� Jailbreaks (e.g., getting root) on various devices:

� iOS (multiple exploits)

� Wii (buffer overflow in The Legend of Zelda: Twilight

Princess).

� PS2 (buffer overflow in the BIOS)

� PS3 (heap overflow)

� Xbox (buffer overflow in savegames)

54

Fun fact: Wii hack was called Twilight hack

Bug Bounty Programs BP

55

Zero-Days in Government

� Computer and network surveillance

� Sometimes use state-sponsored trojan horses (govware)

� Bundestrojaner (Germany)

� MiniPanzer and MegaPanzer (Switzerland)

� “Sicherheitspaket” (Austria)

� NSA Exploits (Shadow Broker Leak)

56

Blue Team aka Defenses

Defenses

We want to defend against attacks

� Defense in CS is surprisingly hard

� In “classical war games”, there is the 3:1 rule

Ñ An attacker needs 3 times as many soldiers as the defender

� Not a law (there are many exceptions) but rule of thumb

57

The defender has a disadvantage

� In CS, the defender has a disadvantage

� Attacker: find one vulnerability

� Defender: protect against all possible attacks

� If the defender misses one vulnerability, the attacker wins

� “The best defense is a good offense” does not work

58

What do we do in CS?

� Mainly two strategies

� Strategy #1: Red Team finds all bugs Ñ Blue Team fixes them

� Strategy #2: Find generic mechanisms Ñ Red Team cannot

exploit the program

59

Strategy #1: Exploit. Fix. Feel Safe. Repeat

� Often, Strategy #1 is used Ñ seems simple (and cheap)

� If a bug is discovered, fix it, done

� “It took an attacker/researcher more than n months to find a

bug, so the cost of finding the next bug is ě n months”

60

Re-cap: Weird machines

� We defined exploitation as a three-step procedure

1. Setup: choose sane state which “allows” getting to a weird state

2. Instantiation: transition from sane state to weird state

3. Programming: program the weird machine

� The fix prevents one weird machine (or its “program”)

� Similar bugs Ñ similar weird machines

61

Strategy #1: Exploit. Fix. Feel Safe. Repeat

� If an attacker found one bug, there might be other similar bugs

� A lot easier to find and exploit similar bugs

� True until there are no similar bugs anymore

62

Strategy #1: Exploit. Fix. Feel Safe. Repeat

63

Strategy #1: Exploit. Fix. Feel Safe. Repeat

64

Strategy #1: Exploit. Fix. Feel Safe. Repeat

65

Strategy #1: Exploit. Fix. Feel Safe. Repeat

66

Strategy #2: The Academic Way

� Better: defense killing whole class of bugs, e.g. buffer overflows

� Can be extremely hard Ñ not easy to find bug-free programs

� We already win if we prevent exploitation

� And we have a solid definition of exploitation

67

Strategy #2: The Academic Way

� Prevent one step of exploitation

� Cannot prevent Setup step Ñ every transition is sane and the

state is defined

� Try to prevent Instantiation and Programming step

� Start with Instantiation step

� We again use the Simple Password Manager as an example

68

An Example

Read PIN

Show PIN

correct?

Show password list

Error message

Yes

No

uint32_t readPIN() {

char buffer[16];

printf("Enter PIN:\n");

gets(buffer);

if(getenv("DEBUG"))

printf(buffer);

return atoi(buffer);

}

69

An Example

� We assume that the Red Team did not find the bugs (yet)

� We don’t know about the gets and printf bug

� The problem the Blue Team has when defending:

� The Blue Team has to roughly know about possible attacks

� Protecting against a (yet) unknown attack is often not possible

or comes with great costs (e.g. performance overhead)

� Assume we know about stack-buffer overflows

70

An Example

� Want to prevent Instantiation step

� Attacker should not get into weird state using a buffer overflow

� Program should rather die than being attacker controlled

� Remember: Stack overflow Ñ overwrite the saved return

address

� Cannot make it readonly (write permissions have page-level

granularity)

71

An Example

� Simple idea: put a known (random) value between the buffer

and the saved return address

� We call this value canary (yes, like the yellow bird)

� Canary is overwritten first

� On return, check whether the canary has the correct value

� If not Ñ buffer overflow, kill program

72

Overwriting the Stack (Canary)

uint32_t readPIN() {

char buffer[16];

printf("Enter PIN:\n");

gets(buffer);

if(getenv("DEBUG")) printf(buffer);

return atoi(buffer);

}

Ñ ...

Ñ IP 0x35343332
BP 0x31303938

Ñ 0x01002236 0x37363534
(

Canary
0x33323130
0x39383736
0x35343332
0x31303938
0x37363534
0x33323130

,

/

/

/

/

/

.

/

/

/

/

/

-

buffer

Before return, check

canary Ñ 0x01002236 ‰

0x37363534 Ñ exit

73

Trigger the Bug with Stack Canary

� Stack canaries are default in gcc

� However, only buffers larger than 8 bytes are protected

� We can use -fstack-protector-all to protect all buffers

% gcc pwdman.c -fstack-protector-all -o pwdman

% ./pwdman

Enter PIN:

012345678901234567890123456789

*** stack smashing detected ***: ./pwdman terminated

[1] 7569 abort (core dumped) ./pwdman

74

We fixed a class of bugs

� We fixed the class of stack-overflow bugs

� The canary protects every stack buffer from being used to get

into a “weird state”

75

We fixed a class of bugs

� Simple stack-buffer overflow cannot get into an exploitable

weird state

� Leak canary using a different trick (e.g., printf bug, or

out-of-bounds read)

Ñ Only prevented a part of a class of bugs

� Still other ways to get into a weird state

� We want something more generic, even if less powerful

76

Any alternatives?

� Alternative to prevent the Instantiation step?

� Overwritting saved instruction pointer on the stack Ñ weird

state

Ñ Separate saved return addresses and buffers

77

An alternative: Safe Stack

� Simple idea: two different stacks, a safe stack and an unsafe

stack

� Simple variables and return values on the safe stack

� Buffers on the unsafe stack

� Buffer overflows cannot overwrite the return address anymore

78

Safe Stack

Safe Stack

0x7FF... saved return address
saved base pointer

*

last frame

saved return address
saved base pointer

*

Unsafe Stack

0x7FF... local variables
(

last frame
local variables

0x000... ...

*

Normal Stack

0x7FF... saved return address
saved base pointer
local variables

,

.

-

last frame

saved return address
saved base pointer
local variables

0x000... ...

,

/

.

/

-

79

Trigger the Bug with Safe Stack

� clang supports safe stacks with a compile flag (not yet implemented in gcc)

% clang pwdman.c -fsanitize=safe-stack -o pwdman

% ./pwdman

Enter PIN:

1234

Wrong PIN!

Enter PIN:

0123456789012345678901234567890123456789

Wrong PIN!

Enter PIN:

80

Think bigger!

� Until now, we only prevented a small class of bugs

� It looks like a cat-and-mouse game

� It works and adds protection, but we have to combine a lot of

countermeasures if we continue that way

� Every countermeasures costs (performance, memory, ...)

� We want something more generic, even if it is not as powerful

as specific countermeasures

81

It’s all about randomness

� Randomness is often used in security Ñ probabilistic approach

� Assumption: attacker can jump to any memory location

� What if all memory locations are unpredictable?

� Attacker cannot reliably jump to a specific location anymore

82

Address Space Layout Randomization (ASLR)

� Address Space Layout Randomization (ASLR) randomizes the

position of program parts

co
d
e

co
d
e

co
d
e

d
a
ta

d
a
ta

d
a
ta

b
ss

b
ss

b
ss

h
ea
p

h
ea
p

h
ea
p

sh
ar
ed

m
em

or
y

sh
ar
ed

m
em

or
y

sh
ar
ed

m
em

or
y

sh
ar
ed

li
b
ra
ri
es

sh
ar
ed

li
b
ra
ri
es

sh
ar
ed

li
b
ra
ri
es

st
a
ck

st
a
ck

st
a
ck

0 247

� Attacker cannot predict the location of a sane or injected state

� Powerful on 64-bit systems Ñ huge address space (128TB)

83

ASLR and its benefits

� ASLR is only a probabilistic countermeasure relying on two
assumptions

� No leak of addresses Ñ breaks ASLR immediately

� Randomization range is large enough Ñ brute force breaks ASLR

� On 64-bit systems, ASLR makes exploitation really hard

� Advantage of ASLR: it costs nearly nothing Ñ widespread use

84

ASLR in the real world

� As ASLR is a cheap but nevertheless effective countermeasure,
it is widely used

� Linux since 2005 (since 2014 in the kernel)

� Windows since 2007

� Android and iOS since 2011

� Mac OS since 2011 (since 2012 in the kernel)

� Prevented many single bug exploits, as they fail with a high

probability

85

Preventing the Programming step

� Assumption: attacker still found a way to get into a weird state

� Last ressort to prevent exploitation Ñ make the Programming

step infeasible

� Attacker uses the input stream to program the weird machine

� We could filter the input stream – but this is not always possible

86

Self awareness

� Idea: make the FSM aware of itself!

� The FSM should know which states and transitions are allowed

Ñ Prevent all transitions which are not in the original FSM

� Every state has to check whether

� target of an indirect jump is correct according to the FSM

� saved return address points to a previous state

� Forces the program to stay inside the FSM

87

Allowed and Disallowed transitions

Read PIN

Show PIN

correct?

Show password list

Error message

✓✓

✓

Yes ✓ ✓

No ✓

✓

✓

✗

✗

✗

✗

✓

88

Control-flow integrity

� Control-flow integrity sounds simple Ñ difficult to implement

� Control-flow graph must be correctly constructed

� Function pointers cannot be protected if destination set is large

� Some functions (e.g., library functions) have many call locations

and therefore return locations

� Still, usable implementations in clang and from Microsoft

� Exploitation is still possible Ñ integrity checks are often

coarse-grained

89

Control-flow integrity - Example

typedef void (*function)();

void help() {

printf("Display this help message\

n");

}

void unlock() {

unlockPasswordManager();

}

void quit() {

printf("Bye!\n");

exit(0);

}

void usage() {

printf("Usage: pwdman-ui <0-2>\n")

;

}

void debug() {

printf("Here is your shell\n");

system("/bin/bash");

}

int main(int argc, char* argv[]) {

function commands[] = {

help, unlock, quit

};

function debugging[] = {

debug

};

if(argc > 1) {

commands[atoi(argv[1])]();

} else usage();

}

90

Control-flow integrity - Example

% clang pwdman-ui.c -o pwdman-ui

% ./pwdman-ui

Usage: pwdman-ui <0-2>

% ./pwdman-ui 0

Display this help message

% ./pwdman-ui 1

Enter PIN: ˆC

% ./pwdman-ui 2

Bye!

% ./pwdman-ui 10

[1] 20659 segmentation fault (core dumped) ./pwdman-ui 10

% ./pwdman-ui -1

Here is your shell

#

91

Control-flow integrity - Example

% clang pwdman-ui.c -fsanitize=cfi -flto -fvisibility=hidden \
-fno-sanitize-trap=all -o pwdman-ui

% ./pwdman-ui

Usage: pwdman-ui <0-2>

% ./pwdman-ui 0

Display this help message

% ./pwdman-ui 10

pwdman-ui.c:43:9: runtime error: control flow integrity check

for type ’void ()’ failed during indirect function call

0x2079616c70736944: note: (unknown) defined here

% ./pwdman-ui -1

pwdman-ui.c:43:9: runtime error: control flow integrity check

for type ’void ()’ failed during indirect function call

0x000000293028: note: (unknown) defined here

92

Is that all we can do?

� We discussed techniques to prevent the Instantiation step

� Canary

� ASLR

� And control-flow integrity to prevent Programming step

� They provide good protection but can be circumvented

� Why use the countermeasures if they can be circumvented?

93

Costs and Raising the Bar

� Often arguments such as

� “We have to increase the costs/raise the bar for an attacker”

� “Many layers of security make it a lot harder for an attacker”

� That is partly true, however...

� ...in most cases there is a trade-off

� Increased cost for the attacker usually comes with increased

cost for the user as well

Ñ slower programs, increased memory consumption, ...

94

Costs and Raising the Bar

� User has to pay the costs all the time

� Attacker only has to pay them once

� A defender has to decide whether such a trade-off is worth for

individual cases

95

Costs and Raising the Bar

� Presented countermeasures provide a good trade-off between

cost and security

� This is one reason why they are widely used

� Future hardware might implement some countermeasures to

reduce the costs

� What else can we do in the meantime?

96

Limit the damage

� Might not prevent attack from a sophisticated attacker

Ñ Restrict the attacker after the exploit

� Protect our system, even if application is controlled by the

attacker

97

Sandboxing

98

Sandboxing - Demo

� Simple sandboxing with Docker can be as easy as running one command
% docker run --rm --read-only=true -i --cap-drop=all \

--net=none -v $PWD:/app -t ubuntu /app/pwdman

Enter PIN: ? ? ? ? ? ? ? ?

ls

app bin boot dev etc home lib lib64 media mnt

opt proc root run sbin srv sys tmp usr var

echo "test" > /tmp/test

sh: 4: cannot create /tmp/test: Read-only file system

networkctl

IDX LINK TYPE OPERATIONAL SETUP

1 lo loopback n/a n/a

1 links listed.

99

Sandboxing - Demo

� An attacker cannot do much anymore

� The file system is readonly, no files can be changed/created

� No files of the host computer are visible, except the program and

the password list

� There is no network connection to easily exfiltrate data

� Even if our program is owned by an attacker, the attacker can

at least not harm the rest of the system

100

Expect the worst

� Always expect the worst case that could happen!

� In this case: attacker found exploitable bug, circumvented all

countermeasures, got a shell in the sandbox and was able to

read the password file

� Ñ No problem if file is encrypted, and key is derived from PIN

� (Assuming the crypto is good, and you used it correctly)

101

Why use a Sandbox then?

� If we encrypt the data, do we even benefit from a sandbox?

� Attacker cannot read the password file anyway

102

Always use a Sandbox!

� Without sandbox, attacker can create/modify files

� Attacker could install a keylogger or other malicious software

� Or replace the password manager with a manipulated one

leaking the PIN

� Best crypto does not help if system is compromised

103

Best practice

� Never assume perfect countermeasures or bug-free code

� Encrypt your data in case it leaks (it will at some point)

� Minimize privileges (e.g., a server should not run as root)

� Log everything – in case of an attack, you have a chance to find

(and sue) the attacker

� Compiler can help to harden your application, e.g., using

compile flags such as -D FORTIFY SOURCE=2

104

Take Aways

� Never ignore compiler warnings

� Don’t disable default counteremeasures (e.g., stack canaries)

� Enable countermeasures that are cheap, e.g., ASLR

� Consider stronger countermeasures, such as CFI

� Always consider sandboxing your application

105

Summary

� Defending software is hard, but not impossible

� Defenses are important to raise the cost for an attacker

� Security is a cat-and-mouse game full of repetitions

� The best countermeasure: don’t have bugs in your code

� Realistic view: impossible to have bug free code, but try to

reduce the number of bugs

106

	Attacks
	Defenses

