
Booting Linux

Roland Czerny

November 24, 2021

1

Overview

• Firmware

• BIOS

• UEFI

• Boot loader

• Kernel

• init program

• Booting - Architecture details

• Secure Boot

2

The Big Picture

Figure 1: Boot steps

3

Firmware

Firmware

• Enumerate and initialize basic hardware

• at least one CPU

• basic memory

• Load boot code (Boot loader)

• Firmware searches disk partitions for ”stub” of boot loader

• Might even load small OS kernel (e.g. OpenBoot for SPARC)

4

BIOS

Basic Input/Output System

• Power-on self-test (POST)

• Search for bootable device

• Master Boot Record (MBR): 512-byte block ending with boot

signature 0x55AA

• MBR contains partition table for 4 partitions

• First 446 bytes hold boot loader stub: starts more capable

boot loader within a partition

• Order specified by bus and controller scan order and BIOS

configuration

5

BIOS

Limitations

• Earlier: stored on ROM, today: EEPROM

+ Updates can fix bugs and add new feature

– Updates could brick or infect computer

• 16-bit real mode, 1MB addressable memory space

• assembly language programming

6

UEFI

Unified Extensible Firmware Interface

• Specification: software interface between OS and platform

hardware

• Replaces BIOS: adds more functionality

• Initialize processor, memory, and peripheral hardware

• UEFI runs . efi applications from EFI system partition

• Boot loader

• UEFI shell

• EFISTUB: use UEFI as bootloader for Linux

7

UEFI

Features

• Powerful pre-OS environment: GUI, multi language, network

capability

• 32-bit or 64-bit, modular design, C language programming

• Legacy BIOS compatibility (CSM): boot from

MBR-partitioned disks

• Secure boot

• Architecture support

• Official: x86, x86-64, ARM (AArch32), ARM64 (AArch64)

• Unofficial: POWERPC64, MIPS, RISC-V

8

Boot loader

Boot loader

BIOS-MBR

• GRUB ”stub” in first 446-byte block of MBR (stage 1)

• information on where to find /boot file system

• stage 1.5 has information on how to read /boot file system

• Stage 2 bootloader does the complex work

• e.g. GRUB2: /boot/grub2/i386−pc/kernel.img, configured by

/boot/grub2/grub.cfg

9

Boot loader

UEFI-GPT

• UEFI has found UEFI System Partition (FAT32 file system)

• example

• firmware loads /EFI/BOOT/BOOTX64.EFI

• /EFI/BOOT/BOOTX64.EFI loads /EFI/BOOT/GRUB.EFI

• typically EFI system is mounted is OS as /boot/efi

10

Initial RAM Disk Image

• Kernel needs to find root file
system on storage device

• might be on network

storage or logical volume

• might be encrypted

• Kernel needs modules to

interact with device that

stores the modules

11

Initial RAM Disk Image

Solution: Boot loader tells kernel how to find an initial RAM disk

image

• contains kernel modules, binaries, scripts, ...

• / init script to find and mount real file system, so real init

program can be run

• Boot loader passes root= directive to kernel

• device name, label, UUID, ...

12

Boot loader

• Boot loader loads compressed kernel image

• Extract and decompress kernel into RAM and turn control

over to it

13

Kernel

Kernel

Kernel startup

• Kernel initializes other CPU cores

• After kernel started / init script from Initial RAM Disk Image,

the real init program is launched

14

Kernel: init /main.c

1 i f (! r u n i n i t p r o c e s s (”/ s b i n / i n i t ”) | |
2 ! r u n i n i t p r o c e s s (”/ e t c / i n i t ”) | |
3 ! r u n i n i t p r o c e s s (”/ b i n / i n i t ”) | |
4 ! r u n i n i t p r o c e s s (”/ b i n / sh ”))

5 r e t u r n 0 ;

6

7 p a n i c (”No i n i t found . Try p a s s i n g i n i t = o p t i o n to

k e r n e l . See L i n u x Documentat ion / i n i t . t x t f o r

g u i d a n c e . ”) ;

15

init program

init program

• Master userspace program: control state of OS

• Ancestor of all processes: PID 1

• Manage all running processes: system services and user

processes

• There are different init programs

16

BSD Unix init

• Uses one master boot script, which calls other scripts to start

services

• One configuration script: enable/disable services

17

System V Unix

• Run Levels

• Target states for running system

• 0-6 runlevels: e.g. 5 is graphical login

• /etc/ inittab configuration, defines default

• /etc/rc .d/rc. sysinit does initialization tasks

• then it runs scripts in /etc/rc .d/rc5.d/ for the graphical target

• Scripts are stored in /etc/rc .d/ init .d/: runlevel folders contain

symlinks

• possible to switch from one level to another

18

Upstart

• Modification of System V method

• inittab just defines default

• Configuration is collection of files in /etc/ init

• Automatically restart crashed service

• Events can trigger services

19

systemd

• Start only what’s needed: e.g. CUPS print service or

Bluetooth can be started when needed or hardware has been

detected

• Aggressively parallels startup

• Start daemons simultaneously

• Dependencies are resolved recursively

• IPC via sockets

• other features: auto-mounting, cgroups, ...

20

systemd

Units

• Booting tasks are organized into units

• Each unit contains configuration information

• Different types: ∗.mount, ∗. service , ∗. socket , ∗.path, ∗. target

• ∗. target

• Define group of units

• Define dependencies on other units

• Analogous to run levels from System V and Upstart

21

systemd

Figure 2: Comparing SysV Runlevel and systemd Targets (aw21)

22

systemd

• Default: / lib /systemd/system/default. target

• Typically symbolic link to multi−user.target or graphical . target

• Can be overwritten with parameter to kernel (e.g. for

rescue.target)

23

systemd

Figure 3: default . target −> graphical.target 24

systemd

Figure 4: multi−user.target

25

systemd

Figure 5: basic . target

26

systemd

Figure 6: sysinit . target

27

OpenRC

• systemd is sometimes criticized of doing too much

• journald , ...

• OpenRC is a lightweight alternative that focuses on being an

init system

• Simple configuration, dependency based

• Native init system for Gentoo

28

Booting - Architecture details

Architecture details

• x86

• FSBL: BIOS/UEFI

• ARM

• FSBL: U-Boot, Trusted Firmware-A

• Boot loader provides ARM tags (ATAG) to kernel

• size and location of system memory, root file system location

29

Architecture details

RISC-V

• Privilege model

• User Mode (U-mode), Supervisor Mode (S-mode), Hypervisor

Mode (H-mode), Machine Mode (M-mode)

• Abstractions

• Device tree

• Supervisor Binary Interface (SBI): Interface between M-mode

and S-mode

• FSBL

• Provides OpenSBI (implementation of SBI)

• e.g. Berkeley Bootloader (BBL) or EDK2 UEFI

• SSBL (e.g. U-Boot) is payload to OpenSBI

30

Secure Boot

UEFI Secure Boot

• Protect against malicious code before OS kernel is loaded

• Verify code loaded by UEFI

• Checksums and signatures

• Most x86 hardware pre-loaded with Microsoft keys

• Option to add extra signing keys

• Secure Boot is enabled by default on most modern systems

31

Thank you for your attention!

32

References i

[1] Bob Cromwell

How Linux Boots, Run Levels, and Service Control.

https:

//cromwell-intl.com/open-source/linux-boot.html.

Online; accessed 23.11.2021

[2] ArchWiki

systemd.

https://wiki.archlinux.org/title/Systemd.

Online; accessed 23.11.2021

33

https://cromwell-intl.com/open-source/linux-boot.html
https://cromwell-intl.com/open-source/linux-boot.html
https://wiki.archlinux.org/title/Systemd

