Secure Software Development - SSD

Assignment Defensive Programming

Schrammel, Koschatko
1011.2021

Winter 2021/22, www.iaiktugraz.at/ssd

Defensive Programming

Since you're now an ,
it is important to know how to them.

Mistakes can happen everywhere B

One careless streat . ..Yours 7

- Mistakes happen everywhere
- Especially in low-level C code
- Look at the defenselets

- It is up to you to write better, safer code

Rernertsoe-Only you can
PREVENT BUFFEROVERFLOWS !

Schrammel, Koschatko | Winter 2021/22, www.iaik tugraz.at/ssd

Write Readable Code www.tugraz.at

- What does the following code do?

#define MAGIC(e) (sizeof(struct { int:-!!(e); }))
- It is magic of course! What is : -!! though?
- Such code is unreadable and easily causes bugs

https://stackoverflow.com/questions/7825055/what-does-the-operator-do-in-c
https://stackoverflow.com/questions/9229601/what-is-in-c-code

https://stackoverflow.com/questions/652788/what-is-the-worst-real-world-macros

Schrammel, Koschatko | Winter 2021/22, www.iaik tugraz.at/ssd

https://stackoverflow.com/questions/7825055/what-does-the-operator-do-in-c
https://stackoverflow.com/questions/9229601/what-is-in-c-code
https://stackoverflow.com/questions/652788/what-is-the-worst-real-world-macros

Goal www.tugraz.at

. - Implement software in a secure manner
- Use good coding style

- Use defensive programming principles
- Do proper error handling

- Write your own tests

- Become a better software-engineer

Schrammel, Koschatko | Winter 2021/22, www.iaik tugraz.at/ssd

Task: Defensive Programming

TI m e|.| ne www.tugraz.at

Defensive-Programming:

Deadline: 7th of January 23:59 (07.01.2022)
Tag: defensive

Schrammel, Koschatko | Winter 2021/22, www.iaik tugraz.at/ssd

TI m e|.| ne www.tugraz.at

Defensive-Programming:

Deadline: 7th of January 23:59 (07.01.2022)
Tag: defensive

Question Hour:
1st of December (01.12.2021)

Schrammel, Koschatko | Winter 2021/22, www.iaik tugraz.at/ssd

www.tugraz.at

- Test System:
https://sase.student.iaik.tugraz.at/

u Schrammel, Koschatko | Winter 2021/22, www.iaik tugraz.at/ssd

https://sase.student.iaik.tugraz.at/
https://extgit.iaik.tugraz.at/sase/practicals/2021/exercise2021-upstream.git
https://extgit.iaik.tugraz.at/sase/practicals/2021/exercise2021-upstream.git

www.tugraz.at

- Test System:
https://sase.student.iaik.tugraz.at/

- Upstream: https://extgit.iaik.tugraz.at/sase/practicals/
2021/exercise2021-upstream.git

- defensive/docker.sh

Schrammel, Koschatko | Winter 2021/22, www.iaik tugraz.at/ssd

https://sase.student.iaik.tugraz.at/
https://extgit.iaik.tugraz.at/sase/practicals/2021/exercise2021-upstream.git
https://extgit.iaik.tugraz.at/sase/practicals/2021/exercise2021-upstream.git

MiniELF www.tugraz.at

- Implement your own library called libmelf
- MiniELF C ELF (Executable and Linkable Format)
- Parse existing ELF file

w - Access and modify it

« Write new ELF file

Schrammel, Koschatko | Winter 2021/22, www.iaik tugraz.at/ssd

MiniELF

mapped into virtual address space
#include <stdio.h> B §
it global_zero objdump -d <elf>

0;
int global_data = 0x58585858; // "XXXX" h_offser——7—> Code section (.text)
const int global_const = 0x44534153; // "SASD"

mov %rsp,%rbp
sub $0x10,%rsp

int main|
o var = movl $0x0,-0x4(%rbp)
printi("Hello MiniELF\n"); mov $0xda1128 %edi
return 0;

readelf -p .rodata <elf>
readelf -| <elf> Read-only data (.rodata)

Program Header . I
List of all segments Hllo MinlELFAn
0x44534153
LOAD 000400000 (0x000¢9497)

LOAD 0x000c9eb8 (0x00001c9) readelf -x .data <elf>
Data section (.data)

0x58585858

readelf -S <elf>

Section headers (SH) Zero section (.bss)
Disticfiatisections J/no data since all zero
text | —
rodata SH strings (.shstriab)
bss "text"

sh_name
data
shstrtab @@ A
symtab
strtab

Schrammel, Koschatko | Winter 2021/22, www.iaik tugraz.at/ssd

MiniELF vs ELF www.tugraz.at

- You only need a subset of ELF

ELF

u Schrammel, Koschatko | Winter 2021/22, www.iaik tugraz.at/ssd

MiniELF vs ELF www.tugraz.at

- You only need a subset of ELF
- Static ELF binaries (executables and object files)

ELF

u Schrammel, Koschatko | Winter 2021/22, www.iaik tugraz.at/ssd

MiniELF vs ELF www.tugraz.at

- You only need a subset of ELF

- Static ELF binaries (executables and object files)
—_— - No overlapping sections/segments

ELF

u Schrammel, Koschatko | Winter 2021/22, www.iaik tugraz.at/ssd

MiniELF vs ELF www.tugraz.at

- You only need a subset of ELF

- Static ELF binaries (executables and object files)

—_— - No overlapping sections/segments
— - Most important sections

- .text, .data, .rodata, .bss, .shstrtab
ELF

u Schrammel, Koschatko | Winter 2021/22, www.iaik tugraz.at/ssd

MiniELF vs ELF www.tugraz.at

- You only need a subset of ELF

- Static ELF binaries (executables and object files)

—_— - No overlapping sections/segments
— - Most important sections

ELF - .text, .data, .rodata, .bss, .shstrtab
- In particular, you do not need special treatment of:

- Dynamic binaries, etc.. .strtab, .symtab, .dynx*, .rela,

.plt, .got, .jcr, .tdata, .tbss, .tcommon, .debugx,
.notex, .gnux*, .comment, ...

u Schrammel, Koschatko | Winter 2021/22, www.iaik tugraz.at/ssd

Earning Points www.tugraz.at

- 100 regular points
- open ELF file
- read sections + segments

- modify sections + segments
- write ELF file

Schrammel, Koschatko | Winter 2021/22, www.iaik tugraz.at/ssd

Earning Points www.tugraz.at

- 100 regular points
- open ELF file
- read sections + segments

- modify sections + segments
- write ELF file

- 20 bonus points

- code coverage

Schrammel, Koschatko | Winter 2021/22, www.iaik tugraz.at/ssd

Functional Dependencies www.tugraz.at

In our testing framework, some functions must work so that others can be tested.
Eg.,

- Most API functions and test-cases require Libmelf_open

- libmelf_setSegmentData may require Libmelf_getSegmentData

Schrammel, Koschatko | Winter 2021/22, www.iaik tugraz.at/ssd

Implementation Flaws | www.tugraz.at

Implementation flaws or issues will (in addition to failed testcases)
globally reduce points, regardless of whether exploitable or not!
- -5 points per issue

Schrammel, Koschatko | Winter 2021/22, www.iaik tugraz.at/ssd

Implementation Flaws | www.tugraz.at

Implementation flaws or issues will (in addition to failed testcases)
globally reduce points, regardless of whether exploitable or not!
- -5 points per issue
- Hard program crash, segfault and similar

Schrammel, Koschatko | Winter 2021/22, www.iaik tugraz.at/ssd

Implementation Flaws | www.tugraz.at

Implementation flaws or issues will (in addition to failed testcases)
globally reduce points, regardless of whether exploitable or not!
- -5 points per issue
- Hard program crash, segfault and similar

(] - Memory corruptions/leaks, use after free, use of uninitialized
% memory

A

Schrammel, Koschatko | Winter 2021/22, www.iaik tugraz.at/ssd

Implementation Flaws | www.tugraz.at

Implementation flaws or issues will (in addition to failed testcases)
globally reduce points, regardless of whether exploitable or not!

- -5 points per issue
- Hard program crash, segfault and similar

(] - Memory corruptions/leaks, use after free, use of uninitialized
memory
- other stuff reported by valgrind, address sanitizer & co

Schrammel, Koschatko | Winter 2021/22, www.iaik tugraz.at/ssd

Implementation Flaws | www.tugraz.at

Implementation flaws or issues will (in addition to failed testcases)
globally reduce points, regardless of whether exploitable or not!
- -5 points per issue
- Hard program crash, segfault and similar
(] - Memory corruptions/leaks, use after free, use of uninitialized
" \ memory
- other stuff reported by valgrind, address sanitizer & co

- Format string vulnerability, integer overflow, ...

Schrammel, Koschatko | Winter 2021/22, www.iaik tugraz.at/ssd

Implementation Flaws | www.tugraz.at

Implementation flaws or issues will (in addition to failed testcases)
globally reduce points, regardless of whether exploitable or not!
- -5 points per issue
- Hard program crash, segfault and similar
(] - Memory corruptions/leaks, use after free, use of uninitialized
memory
- other stuff reported by valgrind, address sanitizer & co
- Format string vulnerability, integer overflow, ...
- Undefined behavior, e.g. (void*)x + 1

Schrammel, Koschatko | Winter 2021/22, www.iaik tugraz.at/ssd

Implementation Flaws | www.tugraz.at

Implementation flaws or issues will (in addition to failed testcases)
globally reduce points, regardless of whether exploitable or not!
- -5 points per issue
- Hard program crash, segfault and similar
(] - Memory corruptions/leaks, use after free, use of uninitialized
memory
- other stuff reported by valgrind, address sanitizer & co
- Format string vulnerability, integer overflow, ...

- Undefined behavior, e.g. (void*)x + 1
- Non-portable, hidden assumptions, e.g. sizeof(int) == 4

Schrammel, Koschatko | Winter 2021/22, www.iaik tugraz.at/ssd

Implementation Flaws | www.tugraz.at

Implementation flaws or issues will (in addition to failed testcases)
globally reduce points, regardless of whether exploitable or not!
- -5 points per issue
- Hard program crash, segfault and similar
(] - Memory corruptions/leaks, use after free, use of uninitialized
memory
- other stuff reported by valgrind, address sanitizer & co
- Format string vulnerability, integer overflow, ...
- Undefined behavior, e.g. (void*)x + 1

- Non-portable, hidden assumptions, e.g. sizeof(int) ==
- Hard-to-read or dangerous code, e.g. #define F(x) x = XxxX

Schrammel, Koschatko | Winter 2021/22, www.iaik tugraz.at/ssd

Implementation Flaws | www.tugraz.at

Implementation flaws or issues will (in addition to failed testcases)
globally reduce points, regardless of whether exploitable or not!
- -5 points per issue
- Hard program crash, segfault and similar
(] - Memory corruptions/leaks, use after free, use of uninitialized
memory
- other stuff reported by valgrind, address sanitizer & co
- Format string vulnerability, integer overflow, ...
- Undefined behavior, e.g. (void*)x + 1
- Non-portable, hidden assumptions, e.g. sizeof(int) ==

- Hard-to-read or dangerous code, e.g. #define F(x) x = XxxX
- Use of global variables

Schrammel, Koschatko | Winter 2021/22, www.iaik tugraz.at/ssd

Implementation Flaws | www.tugraz.at

Implementation flaws or issues will (in addition to failed testcases)
globally reduce points, regardless of whether exploitable or not!
- -5 points per issue
- Hard program crash, segfault and similar
(] - Memory corruptions/leaks, use after free, use of uninitialized
memory
- other stuff reported by valgrind, address sanitizer & co
- Format string vulnerability, integer overflow, ...
- Undefined behavior, e.g. (void*)x + 1
- Non-portable, hidden assumptions, e.g. sizeof(int) ==
- Hard-to-read or dangerous code, e.g. #define F(x) x = XxxX

- Use of global variables
- Compiler warnings with -Wall

Schrammel, Koschatko | Winter 2021/22, www.iaik tugraz.at/ssd

Implementation Flaws I www.tugraz.at

- We test your submission against our own test suite

Schrammel, Koschatko | Winter 2021/22, www.iaik tugraz.at/ssd

Implementation Flaws I www.tugraz.at

- We test your submission against our own test suite
- Here is how you can avoid bugs:

A

Schrammel, Koschatko | Winter 2021/22, www.iaik tugraz.at/ssd

Implementation Flaws I www.tugraz.at

- We test your submission against our own test suite
- Here is how you can avoid bugs:
(J - Listen to your compiler and eliminate warnings

A

Schrammel, Koschatko | Winter 2021/22, www.iaik tugraz.at/ssd

Implementation Flaws I www.tugraz.at

- We test your submission against our own test suite
- Here is how you can avoid bugs:

(J - Listen to your compiler and eliminate warnings
- Write your own test cases

A

Schrammel, Koschatko | Winter 2021/22, www.iaik tugraz.at/ssd

Implementation Flaws I www.tugraz.at

- We test your submission against our own test suite
- Here is how you can avoid bugs:

(J - Listen to your compiler and eliminate warnings
- Write your own test cases
- Use static code analysis like cppcheck or scan-build

A

Schrammel, Koschatko | Winter 2021/22, www.iaik tugraz.at/ssd

Implementation Flaws I www.tugraz.at

- We test your submission against our own test suite
- Here is how you can avoid bugs:
(J - Listen to your compiler and eliminate warnings
- Write your own test cases
- Use static code analysis like cppcheck or scan-build
- Use a fuzzing framework like AFL

A

Schrammel, Koschatko | Winter 2021/22, www.iaik tugraz.at/ssd

Implementation Flaws I www.tugraz.at

- We test your submission against our own test suite
- Here is how you can avoid bugs:
(J - Listen to your compiler and eliminate warnings
- Write your own test cases
- Use static code analysis like cppcheck or scan-build
- Use a fuzzing framework like AFL
- Use valgrind, address-sanitizer, etc.

A

Schrammel, Koschatko | Winter 2021/22, www.iaik tugraz.at/ssd

Implementation Flaws I www.tugraz.at

- We test your submission against our own test suite
- Here is how you can avoid bugs:
(J - Listen to your compiler and eliminate warnings
- Write your own test cases
- Use static code analysis like cppcheck or scan-build
- Use a fuzzing framework like AFL
- Use valgrind, address-sanitizer, etc.
- Let your experienced colleagues check your code ©

A

Schrammel, Koschatko | Winter 2021/22, www.iaik tugraz.at/ssd

Implementation Flaws I www.tugraz.at

- We test your submission against our own test suite
- Here is how you can avoid bugs:
(J - Listen to your compiler and eliminate warnings
- Write your own test cases
- Use static code analysis like cppcheck or scan-build
- Use a fuzzing framework like AFL
- Use valgrind, address-sanitizer, etc.
- Let your experienced colleagues check your code ©

A

- Reuse code when possible and avoid duplication

Schrammel, Koschatko | Winter 2021/22, www.iaik tugraz.at/ssd

Test cases www.tugraz.at

- Implement your own exhaustive test cases

Schrammel, Koschatko | Winter 2021/22, www.iaik tugraz.at/ssd

Test cases www.tugraz.at

- Implement your own exhaustive test cases
- Think of corner cases

Schrammel, Koschatko | Winter 2021/22, www.iaik tugraz.at/ssd

Test cases www.tugraz.at

- Implement your own exhaustive test cases

- Think of corner cases
- Invalid ELF header, overlapping ELF sections

Schrammel, Koschatko | Winter 2021/22, www.iaik tugraz.at/ssd

Test cases www.tugraz.at

- Implement your own exhaustive test cases

- Think of corner cases

- Invalid ELF header, overlapping ELF sections
- NULL pointers, integer overflows, out of mem, ...

Schrammel, Koschatko | Winter 2021/22, www.iaik tugraz.at/ssd

Test cases www.tugraz.at

- Implement your own exhaustive test cases

- Think of corner cases

- Invalid ELF header, overlapping ELF sections
- NULL pointers, integer overflows, out of mem, ...

- Good coverage yields bonus points (if above 50%)

Schrammel, Koschatko | Winter 2021/22, www.iaik tugraz.at/ssd

Test cases www.tugraz.at

- Implement your own exhaustive test cases

- Think of corner cases

- Invalid ELF header, overlapping ELF sections
- NULL pointers, integer overflows, out of mem, ...

- Good coverage yields bonus points (if above 50%)

Overall branch coverage | Bonus points
65% <= cov < 70% 1

70% <= cov < 75% 3

75% <= cov < 80% 5

80% <= cov < 85% 7

85% <= cov < 90% 10

90% <= cov < 95% 15

95% <= cov 20

Schrammel, Koschatko | Winter 2021/22, www.iaik tugraz.at/ssd

HELP! How should | start? www.tugraz.at

- Pull from upstream

Schrammel, Koschatko | Winter 2021/22, www.iaik tugraz.at/ssd

https://en.wikipedia.org/wiki/Executable_and_Linkable_Format
https://lwn.net/Articles/276782/

HELP! How should | start? www.tugraz.at

- Pull from upstream
- Read the provided README .md, Assignment.md

Schrammel, Koschatko | Winter 2021/22, www.iaik tugraz.at/ssd

https://en.wikipedia.org/wiki/Executable_and_Linkable_Format
https://lwn.net/Articles/276782/

HELP! How should | start? www.tugraz.at

- Pull from upstream
- Read the provided README .md, Assignment.md
- Try to understand basic structure of ELF

Schrammel, Koschatko | Winter 2021/22, www.iaik tugraz.at/ssd

https://en.wikipedia.org/wiki/Executable_and_Linkable_Format
https://lwn.net/Articles/276782/

HELP! How should | start? www.tugraz.at

- Pull from upstream

- Read the provided README .md, Assignment.md
- Try to understand basic structure of ELF

- Use readelf and examine some binaries

Schrammel, Koschatko | Winter 2021/22, www.iaik tugraz.at/ssd

https://en.wikipedia.org/wiki/Executable_and_Linkable_Format
https://lwn.net/Articles/276782/

HELP! How should | start? www.tugraz.at

- Pull from upstream

- Read the provided README .md, Assignment.md
- Try to understand basic structure of ELF

- Use readelf and examine some binaries

- Nice overview: https://en.wikipedia.org/wiki/Executable_and_Linkable_Format

Schrammel, Koschatko | Winter 2021/22, www.iaik tugraz.at/ssd

https://en.wikipedia.org/wiki/Executable_and_Linkable_Format
https://lwn.net/Articles/276782/

HELP! How should | start? www.tugraz.at

- Pull from upstream

- Read the provided README .md, Assignment.md

- Try to understand basic structure of ELF

- Use readelf and examine some binaries

- Nice overview: https://en.wikipedia.org/wiki/Executable_and_Linkable_Format

- ELF Segments and Sections https://lwn.net/Articles/276782/

Schrammel, Koschatko | Winter 2021/22, www.iaik tugraz.at/ssd

https://en.wikipedia.org/wiki/Executable_and_Linkable_Format
https://lwn.net/Articles/276782/

HELP! How should | start? www.tugraz.at

- Pull from upstream

- Read the provided README .md, Assignment.md

- Try to understand basic structure of ELF

- Use readelf and examine some binaries

- Nice overview: https://en.wikipedia.org/wiki/Executable_and_Linkable_Format
- ELF Segments and Sections https://lwn.net/Articles/276782/

- man elf

Schrammel, Koschatko | Winter 2021/22, www.iaik tugraz.at/ssd

https://en.wikipedia.org/wiki/Executable_and_Linkable_Format
https://lwn.net/Articles/276782/

HELP! How should | start? www.tugraz.at

- Pull from upstream

- Read the provided README .md, Assignment.md

- Try to understand basic structure of ELF

- Use readelf and examine some binaries

- Nice overview: https://en.wikipedia.org/wiki/Executable_and_Linkable_Format
- ELF Segments and Sections https://lwn.net/Articles/276782/

- man elf

- Ask on our Discord channel!

Schrammel, Koschatko | Winter 2021/22, www.iaik tugraz.at/ssd

https://en.wikipedia.org/wiki/Executable_and_Linkable_Format
https://lwn.net/Articles/276782/

HELP! How should | start? www.tugraz.at

- Pull from upstream

- Read the provided README .md, Assignment.md

- Try to understand basic structure of ELF

- Use readelf and examine some binaries

- Nice overview: https://en.wikipedia.org/wiki/Executable_and_Linkable_Format
- ELF Segments and Sections https://lwn.net/Articles/276782/

- man elf

- Ask on our Discord channel!

- Come by during question hours!

Schrammel, Koschatko | Winter 2021/22, www.iaik tugraz.at/ssd

https://en.wikipedia.org/wiki/Executable_and_Linkable_Format
https://lwn.net/Articles/276782/

	Defensive Programming
	Task: Defensive Programming

