
Exploiting the Linux Kernel for
Privilege Escalation

Pietro Borrello

Who am I

Ph.D. Student at Sapienza University of Rome
Working on:
• Microarchitectural Attacks
• Side Channels
• Program Analysis
• Fuzzing

TRX

Our Journey

1. Setting up the environment

2. First Steps in Kernel Memory
Corruption

3. Gaining Root Privileges

4. Linux Kernel Mitigations

5. Bypassing Linux Kernel
Mitigations

Setting Up the
Environment

2
Run the Kernel

in qemu

1
Fetch & Build

the Linux Kernel

3
Debug the

kernel

Fetch & Build the Linux Kernel

1. Get in touch with Kernel source code on bootlin

https://elixir.bootlin.com/linux/latest/source/kernel

Fetch & Build the Linux Kernel

1. Get in touch with Kernel source code on bootlin

2. Use buildroot to configure and build the kernel

https://elixir.bootlin.com/linux/latest/source/kernel
https://buildroot.org/download.html

Fetch & Build the Linux Kernel

1. Get in touch with Kernel source code on bootlin

2. Use buildroot to configure and build the kernel

3. Collect the output files

https://elixir.bootlin.com/linux/latest/source/kernel
https://buildroot.org/download.html

Debug the Kernel

see:

• https://github.com/hugsy/gef

• https://github.com/martinradev/gdb-pt-dump

https://github.com/hugsy/gef
https://github.com/martinradev/gdb-pt-dump

First Steps in
Kernel Memory

Corruption

2
Common Bugs

1
Kernel Attack

Surface

3
Arbitrary Code
Execution: is it

necessary?

Linux Kernel Attack Surface

Coprocessors

Loadable
Kernel

Modules

Device
Drivers

syscall
interface

OEM
Customizations

Common bugs

• Read out of bounds

• Writes out of bounds

• Type confusions

• Use After Free

• Uninitialized memory

• Integer Overflows

Common bugs

• Read out of bounds

• Writes out of bounds

• Type confusions

• Use After Free

• Uninitialized memory

• Integer Overflows

Common More Interesting bugs

• Direct userspace pointer usage

• TOCTOUs / Double Fetches

• Race Conditions

• Improper Permissions

Direct userspace pointer usage

The kernel has to deal with pointers from userspace that are untrusted
What if ptr or ptr->data points to kernel space?

Direct userspace pointer usage

The kernel has to deal with pointers from userspace that are untrusted
What if ptr or ptr->data points to kernel space?

-> Add check to verify

Double Fetches

Let’s assume you need to copy content from userspace

Double Fetches
Let’s assume you need to copy content from userspace
Ok maybe this is secure…

Double Fetches
Let’s assume you need to copy content from userspace

Arbitrary Code Execution: is it
necessary?

ring0

user

root

FREE

Gaining Root
Privileges

2

The AAW way

1

The ACE way

3

The 1337 way

ACE: Arbitrary Code Execution

AAW: Arbitrary Address Write

AAR: Arbitrary Address Read

1337: 1337

The ACE way - ret2usr

Let’s start easy:

• controlled function pointer

• no kernel mitigations in place

…but what should we do?

The goal is to achieve root privileges in the system.

• The kernel holds privilege information in the task_struct

The ACE way - ret2usr

The goal is to achieve root privileges in the system.

• The kernel holds credentials information in the task_struct

• uses functions to update them

The ACE way - ret2usr

The goal is to achieve root privileges in the system.

• The kernel holds credentials information in the task_struct

• uses functions to update them

• and to generate new ones

The ACE way - ret2usr

1. Leverage the same kernel functions to change credentials to root ones.
• how to find the location of these functions?

/proc/kallsyms: list of the addresses of all symbols loaded in the kernel

• without KASLR: get the address directly

• with KASLR: get the offset w.r.t. kernel .text base

The ACE way - ret2usr

1. Leverage the same kernel functions to change credentials to root ones

The ACE way - ret2usr

1. Leverage the same kernel functions to change credentials to root ones

Now we are root! But how to safely return to userspace to spawn a shell?

The ACE way - ret2usr

1. Leverage the same kernel functions to change credentials to root ones

2. Return to userspace by restoring the right context

The ACE way - ret2usr

1. Leverage the same kernel functions to change credentials to root ones

2. Return to userspace by restoring the right context

3. Enjoy root

The ACE way - ret2usr

What if we don’t have kernel arbitrary code execution?

Let’s assume an Arbitrary Address Write primitive

The AAW way

What if we don’t have kernel arbitrary code execution?

Let’s assume an Arbitrary Address Write primitive

… but what and where to write?

The AAW way

We already know some interesting pointers to overwrite…
commit_creds just overwrites them

The AAW way

We already know some interesting pointers to overwrite…
commit_creds just overwrites them

The AAW way

The AAW way

Overwrite real_cred and cred in current_task with root credentials

The AAW way

Overwrite real_cred and cred in current_task with root credentials

A few details:

• how to find current_task

• how to generate/find root credentials

The AAW way

• how to find current_task

The AAW way

• how to find current_task

• how to generate/find root credentials

there already exists init_cred as a global variable in the kernel data

The AAW way

1. Overwrite current_task ->real_cred and current_task ->cred with init_cred

2. Enjoy root

modprobe is used to add a loadable kernel module to the Linux kernel

The 1337 way - modprobe_path

• the kernel can automatically load
modules executing modprobe as root
when needed. e.g., using different
network protocols, unknown files

• the path to modprobe binary is stored
in the modprobe_path global var

• modprobe_path is in a RW kernel
page by default

1. overwrite modprobe_path using a kernel AAW primitive with the path
of a binary that we control

2. trigger modprobe_path execution, .e.g., executing unknown binary format

3. Enjoy root

The 1337 way - modprobe_path

Linux Kernel
Mitigations

2
KASLR & Friends

1
Prevent

code/data
hijacking

3
Kernel Hardening

We saw how controlling a code pointer may just allow us to jump back to
userspace, and execute arbitrary code at ring0

Supervisor Mode Execution Protection:

• prevent executing from userland pages when in kernel mode

• controlled by 20th bit of cr4

Prevent hijacking - SMEP

ring0
kernel

ring3
userspace

jmp

• controlled by 20th bit of cr4

Can we bypass it?

1. jump to native_write_cr4 and reset the bit

2. jump to userspace

Prevent hijacking - SMEP

ring0
kernel

ring3
userspace

jmp

• controlled by 20th bit of cr4

Can we bypass it?

1. jump to native_write_cr4 and reset the bit

the kernel explicitly prevents writes to sensitive cr4 bits

Prevent hijacking - SMEP

ring0
kernel

ring3
userspace

jmp

Can we disable it? NO

What if we ROP on kernel code?

1. find pivoting gadget in kernel code

2. pivot to ropchain from user data

Prevent hijacking - SMEP

prepare_kernel_cred(0);

commit_creds();

swapgs; ret;

iret;

mov rsp, 0x1337000; ret;

We saw how controlling a pointer may allow us to ROP from userspace, and
execute arbitrary code at ring0

Supervisor Mode Access Prevention:

• prevent accessing data from userland pages when in kernel mode

• controlled by 21st bit of cr4 (pinned bit)

Prevent hijacking - SMAP

ring0
kernel

ring3
userspace

access

Supervisor Mode Access Prevention:

• prevent accessing data from userland pages when in kernel mode

Wait… how do you pass data to the kernel then?

syscall: write(1, buffer, 0x100);

Prevent hijacking - SMAP

ring0
kernel

ring3
userspace

access

Supervisor Mode Access Prevention:

• prevent accessing data from userland pages when in kernel mode

• Fast way to disable SMAP through kernel EFLAGS.AC

Prevent hijacking - SMAP

Kernel Page Table Isolation

prevent attacks on the shared user/kernel address space, with two sets of
pages:

1. userspace page tables with minimal amount of kernel pages

2. kernel page tables with user pages mapped as NX

Mitigation with an
effect similar to
SMEP for exploitation

Prevent hijacking - KPTI

prepare_kernel_cred(0);

commit_creds();

swapgs; ret;

iret;

prepare_kernel_cred(0);

commit_creds();

KPTI trampoline

Kernel Address Space Layout Randomization

Randomize different sections of the kernel independently:

• text segment

• modules

• direct physical map

• …

Lower entropy than userspace ASLR, but here a crash means system crash

-> need to leak KASLR addresses using an AAR primitive/side-channels

KASLR

Function Granular Kernel Address Space Layout Randomization

Random shuffle of kernel code on a per-function granularity at every boot

-> a single leak is no more sufficient to derandomize the entire kernel
address space

FG-KASLR

prepare_kernel_cred

commit_creds

copy_from_user

do_mmap

commit_creds

do_mmap

prepare_kernel_cred

copy_from_user

do_mmap

prepare_kernel_cred

copy_from_user

commit_creds

However…

Certain regions of the kernel cannot be randomized.

• initial _text region

• KPTI trampoline

• kernel symbol table ksymtab

FG-KASLR

Wait what? ksymtab

It is needed to export symbols so that they could be used by kernel modules

FG-KASLR

Wait what? ksymtab

It is needed to export symbols so that they could be used by kernel modules

FG-KASLR

Wait what? ksymtab

It is needed to export symbols so that they could be used by kernel modules

Bypass:

1. Leak _text image base address using an AAR

2. Compute the address of _ ksymtab_<func> from _ text base

3. Leak the value_offset entry from _ ksymtab_<func>

FG-KASLR

Structure Layout Randomization

Usually fields in a C structure are laid out by the compiler in order of their
declaration.

field1

field2

field3

field4

Structure Layout Randomization

Usually fields in a C structure are laid out by the compiler in order of their
declaration.

Randomly rearrange fields at compilation time, using a random seed.

field4

field1

field3

field2

task_struct may have their layout randomized. How can we overwrite creds?

Structure Layout Randomization

task_struct may have their layout randomized. How can we overwrite creds?

-> need to reverse engineer the vmlinux binary to recover the field offsets

Structure Layout Randomization

Build the kernel with different security options to harden its attack surface

• Attack surface reduction

• Enable security features

Kernel Hardening

Build the kernel with different security options to harden its attack surface

• Attack surface reduction

• INIT_STACK_ALL: initialize all stack variables

• SECURITY_DMESG_RESTRICT: avoid leaks of kernel pointers in dmesg

• PANIC_ON_OOPS: panic on kernel oops

• MODULE_SIG_FORCE: force modules to be signed

• BPF_JIT=n: disable BPF jitter

Kernel Hardening

Build the kernel with different security options to harden its attack surface

• Enable security features

• STACKPROTECTOR_STRONG: improve stack canary coverage

• DEBUG_CREDENTIALS: keep track of pointers to cred struct

• HARDENED_USERCOPY: validate memory regions of user pointers

• SLAB_FREELIST_RANDOM/HARDENED: randomize/fortify allocators

• RANDOMIZE_KSTACK_OFFSET: randomize stack offset at each syscall

Kernel Hardening

The modprobe_path technique is so powerful that it has his own mitigation

CONFIG_STATIC_USERMODEHELPER:
Force all usermode helper calls through a single binary

Kernel Hardening - USERMODEHELPER

SELinux defines access controls for every resource in a system.

• mandatory access control decisions made based on security policies

• every process and system resource has a SELinux context

• whitelist of the possible interactions between the SELinux contexts

Kernel Hardening - SELINUX

Bypassing
Linux Kernel
Mitigations

2
Leveraging

Useful Structures

1
kROP on
physmap

SMAP prevents accessing data from userland pages when in kernel mode

Is Kernel ropping dead then?

kROP - SMAP

ring0
kernel

ring3
userspace

access

SMAP prevents accessing data from userland pages when in kernel mode

Is Kernel ropping dead then?

• directly place the chain in kernel land if you have control over some data

• indirectly place the chain in kernel land

kROP - SMAP

ring0
kernel

ring3
userspace

access

SMAP prevents accessing data from userland pages when in kernel mode

Is Kernel ropping dead then?

• directly place the chain in kernel land if you have control over some data

• indirectly place the chain in kernel land

kROP - SMAP

ring0
kernel

ring3
userspace

access
INDIRECTLY?

The kernel has a view of the whole physical memory mapped in physmap
-> This means userspace pages are aliased in kernel memory!

kROP - physmap

The kernel has a view of the whole physical memory mapped in physmap
-> This means userspace pages are aliased in kernel memory!

kROP - physmap

ring0
kernel

ring3
userspace

access

userspace
alias

The kernel has a view of the whole physical memory mapped in physmap
-> This means userspace pages are aliased in kernel memory!

• originally the mapping was RWX!
(now fixed)

• SMAP bypass:

1. spray ropchain pages in userspace

2. locate the page in physmap using AAR

3. ROP to physmap

kROP - physmap

ring0
kernel

ring3
userspace

access

userspace
alias

During kernel exploitation you have a lot of control on the objects that are
allocated as consequence of actions performed in userspace.

Often you have bugs that give you limited capabilities during exploitation
and want to:

• promote an out-of-bound read/write to AAR/W

• promote AAR/W to RIP control

• RIP control to ACE

Let’s look at some useful structures the kernel uses and that we can leverage

Leveraging useful structures

Created in kernel heap for each open(“/dev/ptmx”) syscall
-> useful for leaks and RIP control

Useful structures - tty_struct

Leak kernel base + RIP control

Leak kernel heap address

Created in kernel heap for each msgsnd() syscall
-> Variable in size + up to 4048 bytes of arbitrary data

Useful structures - msg_msg

Leak kernel heap address

Copy of user data

userfaultfd lets you handle page faults on userspace, by defining a handler
that will be called to manage virtual memory.

But why is it useful?

-> we can make the kernel hang on user data access, while waiting for the
handler execution

-> deterministically enlarge race condition windows

Useful functions - userfaultfd

For each setxattr syscall the kernel allocates a buffer in heap with data
completely controlled by userspace. Couple with userfaultfd to avoid dealloc

Useful functions - setxattr

Copy of user data in
kernel heap

With strong enough exploitation primitives, any mitigation can be bypassed.

Are we doomed?

• coverage guided kernel fuzzing to find bugs:
https://github.com/google/syzkaller

• secure programming to avoid bugs:
https://github.com/Rust-for-Linux

Takeaway

CREDITS: This presentation template was created by
Slidesgo, including icons by Flaticon, infographics &

images by Freepik

Thanks
Do you have any questions?
borrello@diag.uniroma1.it

@borrello_pietro

https://slidesgo.com/
https://www.flaticon.com/
https://www.freepik.com/
mailto:borrello@diag.uniroma1.it

Resources (1)

● GET IN THE MOOD: https://www.youtube.com/watch?v=G1IbRujko-A

● https://github.com/smallkirby/kernelpwn

● https://github.com/pr0cf5/kernel-exploit-practice

● https://lkmidas.github.io/posts/20210123-linux-kernel-pwn-part-1/

● https://lkmidas.github.io/posts/20210223-linux-kernel-pwn-modprobe/

● https://devilinside.me/blogs/small-steps-kernel-exploitation

● https://duasynt.com/blog/linux-kernel-heap-spray

https://www.youtube.com/watch?v=G1IbRujko-A
https://github.com/smallkirby/kernelpwn
https://github.com/pr0cf5/kernel-exploit-practice
https://lkmidas.github.io/posts/20210123-linux-kernel-pwn-part-1/
https://lkmidas.github.io/posts/20210223-linux-kernel-pwn-modprobe/
https://devilinside.me/blogs/small-steps-kernel-exploitation
https://duasynt.com/blog/linux-kernel-heap-spray

Resources (2)

● https://ptr-yudai.hatenablog.com/entry/2020/03/16/165628

● https://googleprojectzero.blogspot.com/2020/02/mitigations-are-attack-surface-too.html

● https://blog.lexfo.fr/cve-2017-11176-linux-kernel-exploitation-part1.html

● https://meowmeowxw.gitlab.io/ctf/3k-2021-klibrary/

● https://google.github.io/security-research/pocs/linux/cve-2021-22555/writeup.html

● https://akulpillai.com/posts/learning_through_challenges1/

● https://github.com/R3x/How2Kernel

https://ptr-yudai.hatenablog.com/entry/2020/03/16/165628
https://googleprojectzero.blogspot.com/2020/02/mitigations-are-attack-surface-too.html
https://blog.lexfo.fr/cve-2017-11176-linux-kernel-exploitation-part1.html
https://meowmeowxw.gitlab.io/ctf/3k-2021-klibrary/
https://google.github.io/security-research/pocs/linux/cve-2021-22555/writeup.html
https://akulpillai.com/posts/learning_through_challenges1/
https://github.com/R3x/How2Kernel

Resources (3)

● https://pr0cf5.github.io/ctf/2020/03/09/the-plight-of-tty-in-the-linux-kernel.html

● https://www.graplsecurity.com/post/kernel-pwning-with-ebpf-a-love-story

https://pr0cf5.github.io/ctf/2020/03/09/the-plight-of-tty-in-the-linux-kernel.html
https://www.graplsecurity.com/post/kernel-pwning-with-ebpf-a-love-story

