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Why Lattice-Based Cryptography?

Conjectured security against quantum attacks:
3/4 (PKE) resp. 2/3 (Signature) finalists of NIST PQ-Crypto standardization are
lattice-based.

Novel Constructions:

Fully Homomorphic Encryption
Attribute-Based Encryption
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Literature

The slides are based on the following sources

An Introduction to Mathematical Cryptography, Hoffstein, Jeffrey, Pipher, Jill,
Silverman, J.H.

A Decade of Lattice Cryptography, Chris Peikert

Talk: The Short Integer Solutions Problem and Cryptographic Applications by
Daniele Micciancio (Lattice Workshop Berkeley)

Many graphics are based on graphics from Maria Eichlseder.
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Lattices: Definition and Properties



Lattice: Example

Let v1, . . . , vn ∈ Rn be a set of linearly independent vectors. The lattice generated by
v1, . . . , vn is the set of linear combinations of v1, . . . , vn with coefficients in Z,

L = {a1v1 +⋯ + anvn ∶ a1, . . . ,an ∈ Z}.

Example:

v1 = (
1
0), v2 = (

1/4√
2) R
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Lattices

Definition (Lattice)

An n-dimensional lattice L is any subset of Rn that is both:

an additive subgroup

discrete

A basis for L is any set of independent vectors that generates L.
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Fundamental Domains

Definition (Fundamental Domain)

Let L be a lattice of dimension n and let v1, . . . , vn be a basis for L. The fundamental
domain is the set

F = [0,1)v1 +⋯ + [0,1)vn.
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Volumes

Definition (Volume)

Let L be a lattice of dimension n and let F be a fundamental domain of L. Then the
n-dimensional volume of F is called the volume of L (or sometimes the determinant
of L).

Example: Let L be generated by the vectors

v1 = (
1
0) , v2 = (

1/4√
2) .

we write L = L(v1, v2). First, compute Gram matrix:

G = (
1 0
1
4

√
2
) ⋅ (

1 1
4

0
√

2
) = (

1 1
4

1
4

33
16
)

Therefore,
vol(L) =

√
detG =

√
2
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Same Lattice?

v1 = (
3
0), v2 = (

2
2)

● ● ● ● ● ● ● ● ●
● ● ● ● ● ● ● ● ●
● ● ● ● ● ● ● ● ●
● ● ● ● ● ● ● ● ●
● ● ● ● ● ● ● ● ●
● ● ● ● ● ● ● ● ●
● ● ● ● ● ● ● ● ●

v′1 = (
8
2), v′2 = (

5
2)

● ● ● ● ● ● ● ● ●
● ● ● ● ● ● ● ● ●
● ● ● ● ● ● ● ● ●
● ● ● ● ● ● ● ● ●
● ● ● ● ● ● ● ● ●
● ● ● ● ● ● ● ● ●
● ● ● ● ● ● ● ● ●

Task: Compute the volumes V resp. V ’ of the fundamental domains corresponding to
L(v1, v2) respectivelyL(v′1, v′2).
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Same Lattice?

v1 = (
3
0), v2 = (

2
2)

● ● ● ● ● ● ● ● ●
● ● ● ● ● ● ● ● ●
● ● ● ● ● ● ● ● ●
● ● ● ● ● ● ● ● ●
● ● ● ● ● ● ● ● ●
● ● ● ● ● ● ● ● ●
● ● ● ● ● ● ● ● ●

v′1 = (
8
2), v′2 = (

5
2)

● ● ● ● ● ● ● ● ●
● ● ● ● ● ● ● ● ●
● ● ● ● ● ● ● ● ●
● ● ● ● ● ● ● ● ●
● ● ● ● ● ● ● ● ●
● ● ● ● ● ● ● ● ●
● ● ● ● ● ● ● ● ●

Proposition

Every fundamental domain for a given lattice L has the same volume.
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Minimum Distance

Definition (Minimum Distance)

The minimum distance of a lattice L is the length of a shortest nonzero lattice vector,
i.e.,

λ1(L) ∶= min
v∈L∖{0}

∥v∥.

More generally, the ith minimum λi(L) is defined as the minimum of max
1≤j≤i
∥vj∥ over all

i linearly independent lattice vectors v1, . . . , vi ∈ L.

Clearly λ1(L) ≤ ⋯ ≤ λn(L).

L = L((3
0) ,(

2
2))

⇒ λ1(L) =
√

8
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Computational Problems

Shortest Vector Problem (SVP): Find a shortest nonzero vector v ∈ L, i.e.
∥v∥ = λ1(L).

Approximate Shortest Vector Problem (SVPγ): Let γ ≥ 1 be a approximation
factor. Given a basis B of an n-dimensional lattice L, find a nonzero vector v ∈ L s.t.

∥v∥ ≤ γ(n) ⋅ λ1(L).

Approximate Shortest Independent Vectors Problem (SIVPγ): Given a basis B of
an n-dimensional lattice L, find set {s1, . . . , sn} ⊂ L of n linearly independent
vectors s.t.

∥si∥ ≤ γ(n) ⋅ λn(L) for all i.
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Summary

Lattices are "discrete vector spaces".

Basis of the same lattice can be quite different (from a computational point of
view).

λ1(L) = length of shortest nonzero lattice vector.

SVPγ ∶ Find somewhat short vector.
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Short Integer Solution Problem



Short Integer Solution (SIS)

Definition (SIS, Ajtai’s function)

Givenm uniformly random vectors ai ∈ Znq, forming the columns of a matrix
A ∈ Zn×mq , find a nonzero integer vector z ∈ Zm of norm ∥z∥ ≤ β such that

Az = 0 ∈ Znq.

fA(z) ∶= Az mod q is called Ajtai’s function, i.e., we are interested in short vectors of
the kernel of fA.

Example: q = 10, z ∈ {0,1}m

⎡⎢⎢⎢⎢⎢⎢⎢⎣

1 4 5 9 3 0 2
4 2 8 6 2 4 3
7 5 5 4 7 8 0
2 7 0 1 4 6 9

⎤⎥⎥⎥⎥⎥⎥⎥⎦

⋅

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

z1
z2
z3
z4
z5
z6
z7

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

=

⎡⎢⎢⎢⎢⎢⎢⎢⎣

2
2
7
1

⎤⎥⎥⎥⎥⎥⎥⎥⎦

⎡⎢⎢⎢⎢⎢⎢⎢⎣

1 4 5 9 3 0 2
4 2 8 6 2 4 3
7 5 5 4 7 8 0
2 7 0 1 4 6 9

⎤⎥⎥⎥⎥⎥⎥⎥⎦

⋅

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0
z2
1
0
1
z6
0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

=

⎡⎢⎢⎢⎢⎢⎢⎢⎣

2
2
7
1

⎤⎥⎥⎥⎥⎥⎥⎥⎦

⎡⎢⎢⎢⎢⎢⎢⎢⎣

1 4 5 9 3 0 2
4 2 8 6 2 4 3
7 5 5 4 7 8 0
2 7 0 1 4 6 9

⎤⎥⎥⎥⎥⎥⎥⎥⎦

⋅

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0
1
1
0
1
0
0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

=

⎡⎢⎢⎢⎢⎢⎢⎢⎣

2
2
7
1

⎤⎥⎥⎥⎥⎥⎥⎥⎦
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Observations about SIS problem

Without constraint on ∥z∥, it is easy to find solution via Gaussian elimination.

If β ≥ q, then z = (q,0, . . . ,0) ∈ Zm is a solution.

If z is a solution for a matrix A then z can be converted to a solution for [A ∣ A′]
(appending z with zeros).

⎡⎢⎢⎢⎢⎢⎢⎢⎣

1 4 5 9 3 0 2
4 2 8 6 2 4 3
7 5 5 4 7 8 0
2 7 0 1 4 6 9

⎤⎥⎥⎥⎥⎥⎥⎥⎦

⋅

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0
1
1
0
1
0
0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

=

⎡⎢⎢⎢⎢⎢⎢⎢⎣

2
2
7
1

⎤⎥⎥⎥⎥⎥⎥⎥⎦

⎡⎢⎢⎢⎢⎢⎢⎢⎣

1 4 5 9 3 0 2 4 5
4 2 8 6 2 4 3 1 5
7 5 5 4 7 8 0 9 6
2 7 0 1 4 6 9 6 3

⎤⎥⎥⎥⎥⎥⎥⎥⎦

⋅

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

z1
z2
z3
z4
z5
z6
z7
z8
z9

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

=

⎡⎢⎢⎢⎢⎢⎢⎢⎣

2
2
7
1

⎤⎥⎥⎥⎥⎥⎥⎥⎦

⎡⎢⎢⎢⎢⎢⎢⎢⎣

1 4 5 9 3 0 2 4 5
4 2 8 6 2 4 3 1 5
7 5 5 4 7 8 0 9 6
2 7 0 1 4 6 9 6 3

⎤⎥⎥⎥⎥⎥⎥⎥⎦

⋅

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0
1
1
0
1
0
0
0
0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

=

⎡⎢⎢⎢⎢⎢⎢⎢⎣

2
2
7
1

⎤⎥⎥⎥⎥⎥⎥⎥⎦
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Requirements for a solution to SIS problem

The number of vectorsm and the norm β must be large enough. A solution exists if

β ≥
√
⌈n log q⌉ and m ≥ ⌈n log q⌉.

Proof.

w.l.o.g. assumem = ⌈n log q⌉.
Observe that

∣ {x ∈ {0,1}m} ∣= 2m ≥ 2n log q = qn.
By the pigeonhole argument there exists x ≠ x′ ∶ Ax = Ax′ ∈ Znq.
⇒ z ∶= x − x′ ∈ {0,±1}m is a solution and

∥z∥ ≤
√
m =
√
⌈n log q⌉ ≤ β.
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Example

q = 10, z ∈ {0,1}m

⎡⎢⎢⎢⎢⎢⎢⎢⎣

1 4 5 9 3 0 2
4 2 8 6 2 4 3
7 5 5 4 7 8 0
2 7 0 1 4 6 9

⎤⎥⎥⎥⎥⎥⎥⎥⎦

⋅

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

z1
z2
z3
z4
z5
z6
z7

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

=

⎡⎢⎢⎢⎢⎢⎢⎢⎣

2
2
7
1

⎤⎥⎥⎥⎥⎥⎥⎥⎦

Are the following conditions satisfied?

β ≥
√
⌈n log q⌉ and m ≥ ⌈n log q⌉.

√
7

!
≥
√
⌈4 log 10⌉ =

√
14, and 7

!
≥ ⌈4 log 10⌉ = 14.
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Connection to Lattices

We can look at the SIS problem as a short vector problem on so-called q-ary
m-dimensional lattices.

L�(A) ∶= {z ∈ Zm ∶ Az = 0 ∈ Znq} ⊃ qZm.

Solving the SIS problems can be accomplished by finding a sufficiently short nonzero
vector inL�(A), where A is chosen uniformly at random.
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Hardness

Theorem

For anym = poly(n), any β > 0, and any sufficiently large q ≥ β ⋅ poly(n), solving
SISn,q,β,m with non-negligible probability is at least as hard as solving SIVPγ on
arbitrary n-dimensional lattices with overhelming probability, for some
γ = β ⋅ poly(n).

Solving an arbitrary instance of a SIS problem is at least as hard as solving SIVPγ in
the worst case.

m and q play no essential role in the hardness guarantee.

Approximation factor γ degrades with β.
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Collision Resistant Hashing

Already know that fA ∶ {0,1}m → Znq is compressing provided thatm > n log q. The
pigeonhole argument from above shows us even more. Assuming hardness of the
corresponding SIS problem Ajtai’s function

fA ∶ {0,1}m → Znq is collision resistant.

Proof.

Assume to the contrary that an efficient attacker can find a collision, i.e.,

x ≠ x′ ∈ {0,1}m ∶ fA(x) = fA(x′).

Then z ∶= x − x′ is a solution for the corresponding SIS problem.

⇒ fA is a collision resistant hash function.
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Example: Hash-to-Point in FALCON

Input: Input string STR, modulus q ≤ 216, degree n ∈ Nj
Output: polynomial c = ∑n−1

i=0 cixi ∈ Zq[x]
1 k ← ⌊216/q⌋
2 ctx← SHAKE − 256 − Init()
3 i ← 0
4 while i < n do
5 t ← SHAKE − 256 −Extract(ctx,16)
6 if t < kq then
7 ci ← t mod q
8 i ← i + 1
9 end
10 end
11 return c
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Commitment Scheme

Choose A1,A2 at random.

Commitment C to messagem ∈ {0,1}m:

Choose r ← {0,1}m

Compute C ← f[A1,A2](m, r) = A1m + A2r

Hiding: C hides the message because A2r ≈ U(Znq).

Binding: Finding (m, r) ≠ (m′, r′) such that f[A1,A2](m, r) = f[A1,A2](m′, r′) breaks
the collision resistance of f[A1,A2].
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Linear Homomorphism

Ajtai’s function is linear homomorphic in the "message"

fA(x1 + x2) = fA(x1) + fA(x2),

and the "key"
fA1+A2(x) = fA1(x) + fA2(x).

Warning: Domain of fA is not closed under +.
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One-Time Signatures
fA can be extend to matrices X = [x1, . . . , xk]: fA(X) = [fA(x1), . . . , fA(xk)] = AX( mod q).

KeyGen ∶ Let A ∈ Zn×mq be uniformly at random. Choose
sk← (X, x) ∈ {0,1}k×m × {0,1}m and pk← (Y = fA(X), y = fA(x)) (image
of sk under fA).

Sign(sk,m ∈ {0,1}k) ∶ On input of a secret key sk and a messagem, output a
signature Xm + x.

Verify(pk,m, σ) ∶ On input of a public key pk, a messagem and a signature σ, return 1
if the following holds and 0 otherwise:

fA(σ) = Ym + y.
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Efficiency of Ajtai’s function

Fix n = 26, and q = 28. How should you choosem if we aim for a efficient compression
function fA ∶ {0,1}m → Znq ? (Recall: β ≥

√
n log q, andm ≥ n log q)

Key size:?

Runtime:?

Usable, but inefficient!
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Summary

SIS problem: Finding short solution in the kernel of Ajtai’s function fA(z) ∶= Az.

Solution exists if β2,m ≥ n log q.

SIS problem ≡ SVPγ .

Solving average-case SIS problem is at least as hard as solving worst-case SIVPγ .

Ajtai’s function is collision resistant.

SIS admits minicrypt primitives (usable, but inefficient)
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What you should know...

Definition of lattices

Computational problems: SVPγ and SIVPγ

SIS problem (parameters for existence of solution, hardness, applications)
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