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Why Lattice-Based Cryptography?

m  Conjectured security against quantum attacks:

3/4 (PKE) resp. 2/3 (Signature) finalists of NIST PQ-Crypto standardization are
lattice-based.

= Novel Constructions:

= Fully Homomorphic Encryption
= Attribute-Based Encryption
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Literature

The slides are based on the following sources

= An Introduction to Mathematical Cryptography, Hoffstein, Jeffrey, Pipher, Jill,
Silverman, J.H.

= ADecade of Lattice Cryptography, Chris Peikert

= Talk: The Short Integer Solutions Problem and Cryptographic Applications by
Daniele Micciancio (Lattice Workshop Berkeley)

Many graphics are based on graphics from Maria Eichlseder.



Lattices: Definition and Properties



Lattice: Example

Letvy,...,v, € R” be aset of linearly independent vectors. The lattice generated by

Vi,...,V,isthe set of linear combinations of vy, . .., v, with coefficients in Z,
L={awvi+--+apvy : Q1,...,0, € Z}.

Example: =
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Lattices

Definition (Lattice)

An n-dimensional lattice L is any subset of R” that is both:
= an additive subgroup
= discrete

A basis for L is any set of independent vectors that generates L.
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Fundamental Domains

Definition (Fundamental Domain)

Let L be a lattice of dimension nand let vy, ..., v, be a basis for L. The fundamental
domain is the set
F=10,1)vy +---+[0,1)v,.

=
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Volumes

Definition (Volume)

Let L be a lattice of dimension n and let F be a fundamental domain of L. Then the
n-dimensional volume of F is called the volume of L (or sometimes the determinant
of L).

Example: Let L be generated by the vectors

(i (4)

we write L = £(v1, v,). First, compute Gram matrix:
ot °) [ : 1
S\ v2) o v2) \d

vol(L) = V/detG =2

NI
~——

Therefore,



Same Lattice?

Task: Compute the volumes V resp. V’ of the fundamental domains corresponding to
L(v1,Vvy) respectively £(v7,V5).
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Same Lattice?

Every fundamental domain for a given lattice L has the same volume.
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Minimum Distance

Definition (Minimum Distance)

The minimum distance of a lattice L is the length of a shortest nonzero lattice vector,
i.e.,
A1(L) == mi .
()= min |v]
More generally, the ith minimum X;(L) is defined as the minimum of rl'na>g||vj|| over all
<j<i

i linearly independent lattice vectors vy, ..., v; € L.

Clearly A; (L) <--- < Ap(L).
3 2
=<((0)-2)

=M\ (L) =38
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Computational Problems

Shortest Vector Problem (SVP): Find a shortest nonzero vectorv e L, i.e.
vl = As(L).

Approximate Shortest Vector Problem (SVP,): Let v > 1 be a approximation

factor. Given a basis B of an n-dimensional lattice L, find a nonzero vectorv € L s.t.

[vl <~ (n)-As(L).

Approximate Shortest Independent Vectors Problem (S/VP,): Given a basis B of
an n-dimensional lattice L, find set {s1,...,s,} c L of n linearly independent
vectors s.t.

Isi| <~v(n)-An(L) foralli.
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Summary

= Lattices are "discrete vector spaces".

= Basis of the same lattice can be quite different (from a computational point of
view).

= )\;(L) =length of shortest nonzero lattice vector.

= SVP, :Find somewhat short vector.
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Short Integer Solution Problem



Short Integer Solution (SIS)

Definition (SIS, Ajtai’s function)

Given m uniformly random vectors a; € Z_, forming the columns of a matrix
A€ Zg™, find a nonzero integer vector z € Z™ of norm | z|| < 8 such that

Az:OeZZ.

fa(z) := Az mod qgis called Ajtai’s function, i.e., we are interested in short vectors of
the kernel of f4.

Example: g = 10,z € {0,1}" (2,
23
Z3
-z =
Zs
Ze
_Z7
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Observations about SIS problem

= Without constraint on ||z, it is easy to find solution via Gaussian elimination.
= Ifg>q,thenz=(q,0,...,0) € Z™isasolution.

= [fzisasolution for a matrix A then z can be converted to a solution for [A | A’]
(appending z with zeros).

0
1
145930212
4286243'0_2
75547801_7
270146901
-O_
2
)




Requirements for a solution to SIS problem

The number of vectors m and the norm 3 must be large enough. A solution exists if

B >+/[nlogqg] and m>[nlogq].

w.l.o.g. assume m = [nlogq].
Observe that
| {x€{0,1}7} |= 2" > 2""°89 = ¢".

By the pigeonhole argument there exists x # x” : Ax = Ax" € Zg.
= z:=x-x"€{0,+£1}" is a solution and

|z < v/m =+/[nlogq] < 5.
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Example

q=10,z¢{0,1}"

Z

2
1450930 2]|7 [2
4286 24 3|73 2
75547 80| |7
2 701 46 9|7 [1

Zs

_Z7_

Are the following conditions satisfied?
B >+/[nlogqg] and m>[nlogq].

ﬁéx/[4|og10] = /14, and 7 > [4log 10] = 14.
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Connection to Lattices

We can look at the SIS problem as a short vector problem on so-called g-ary
m-dimensional lattices.

LH(A):={zeZ":Az=0¢€Zy} > qZ".

Solving the SIS problems can be accomplished by finding a sufficiently short nonzero
vector in £*(A), where A is chosen uniformly at random.
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Hardness

Theorem

For any m = poly(n), any 8 > 0, and any sufficiently large g > 3 - poly(n), solving
SIS, g,8,m With non-negligible probability is at least as hard as solving SIVP,, on
arbitrary n-dimensional lattices with overhelming probability, for some

v = 8- poly(n).

= Solving an arbitrary instance of a SIS problem is at least as hard as solving SIVP,, in
the worst case.

= mand g play no essential role in the hardness guarantee.

= Approximation factor v degrades with .
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Collision Resistant Hashing

Already know that f4 : {0,1}" — Z is compressing provided that m > nlog g. The
pigeonhole argument from above shows us even more. Assuming hardness of the
corresponding SIS problem Ajtai’s function

fa:{0,1}" — Zg is collision resistant.

Assume to the contrary that an efficient attacker can find a collision, i.e.,
x#x €{0,1}7: fa(x) = fa(x").
Then z := x — x" is a solution for the corresponding SIS problem. Ol

= f, is a collision resistant hash function.
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Example: Hash-to-Point in FALCON

Input: Input string STR, modulus g < 2%, degree n € Nj
Output: polynomial ¢ = 77 cix’ € Zg[x]
k< [2"/q]
ctx « SHAKE - 256 — Init()
i< 0
while/ < ndo
t « SHAKE - 256 — Extract(ctx, 16)
if t < kg then
ci<t modg
f«<i+1
end
end
return c

20
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Commitment Scheme

Choose A, A, at random.

Commitment C to message m € {0,1}™:
= Chooser « {0,1}"

= Compute C < fia, 4,1(m,r) = Aim + Ayr
Hiding: C hides the message because Ayr ~ U(Zy).

Binding: Finding (m,r) # (m’,r") such that fis 4,1(m, r) = fi4, 4, (m’, r") breaks
the collision resistance of fi4, 4,].
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Linear Homomorphism

Ajtai’s function is linear homomorphic in the "message"
fA(Xl +X2) = fA(Xl) + fA(Xz),

and the "key"
fA1+A2 (X) = fA1 (X) + fAz (X)

Warning: Domain of f4 is not closed under +.
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One-Time Signatures
fa can be extend to matrices X = [x1,. .., Xk]: fa(X) = [fa(x1), ..., fa(xx)] = AX( mod q).

KeyGen : LetA e Zg*™ be uniformly at random. Choose
sk « (X’X) € {Oa 1}k><m x {0’ l}m and pk < (Y = fA(X)’y = fA(X)) (image
of sk under f3).

Sign(sk,m € {0,1}%) : Oninput of a secret key sk and a message m, output a
signature Xm + x.

Verify(pk,m, o) : Oninput of a public key pk, a message m and a signature o, return 1
if the following holds and 0 otherwise:

fa(o) =Ym+y.

23/26



Efficiency of Ajtai’s function

Fix n = 28, and g = 28. How should you choose m if we aim for a efficient compression
function fy : {0,1}™ — Zg ? (Recall: 3 > \/nlog g, and m > nlog q)

Key size:?

Runtime:?

Usable, but inefficient!
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Summary

= SIS problem: Finding short solution in the kernel of Ajtai’s function f4(z) := Az.

= Solution exists if 52,m > nlogg.

= SIS problem = SVP,.

= Solving average-case SIS problem is at least as hard as solving worst-case SIVP,,.
= Ajtai’s function is collision resistant.

= SIS admits minicrypt primitives (usable, but inefficient)
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What you should know...
m  Definition of lattices

= Computational problems: SVP, and SIVP,,

= SIS problem (parameters for existence of solution, hardness, applications)
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