

System Level Programming

Daniel Gruss

2021-04-19

Course Overview

A0, A1, A2

Compiler, C, Multithreading, Synchronization

A3, A4

Virtual Memory, Processes and Sandboxing

A5, A6

System Programming

A5 - malloc/free - Task Description

� Write your own implementation of malloc/free

� void *malloc(size t size);

� void free(void *ptr);

� Write them in C++ with classes!!

� The malloc/free functions manage the Heap area and give a program the ability to request

memory areas of a given size and free those areas if they are not needed anymore

� You can reuse this code in OS A2

A5 - malloc/free - Introduction

i n t i n p u t s i z e = 2 0 0 ;

i n t * b u f f e r = m a l l o c (i n p u t s i z e * s i z e o f (i n t)) ;

memcpy (b u f f e r , i n p u t , i n p u t s i z e)

// do someth ing v e r y i m p o r t a n t

f r e e (b u f f e r) ;

� Where in the memory is this buffer area?

� How can it be increased/decreased at runtime?

Memory of a process

Code

BSS

Stack

program break

� Virtual Memory Space

� Code: Segment for the binary code

� BSS: part of Data Segment;

global/static variables with known size at

compiletime

� Program break shows end of Data Segment

� Program break can be increased/decerased

Heap

Data

BSS

Stack

program break

initial program break

Heap

� Program break increased

� Heap = between end of BSS Segment and program break

� Memory addresses below program break can be used by the

program

� Let’s use this area for our buffer

Heap

Data

BSS

Stack

program break

initial program break

buffer

� Program break increased

� Heap = between end of BSS Segment and program break

� Memory addresses below program break can be used by the

program

� Let’s use this area for our buffer

brk/sbrk

� OS offers syscalls brk and sbrk to change the program break of the own process

� void* sbrk(intptr t increment);

� sbrk(inc) increments the break by inc bytes

� Returns the address of the previous program break

� sbrk(0) returns current location of the break

Why not just:

v o i d *m a l l o c (s i z e t s i z e){
r e t u r n s b r k (s i z e)

}

Because ...

w h i l e (1){
v o i d * t = m a l l o c (1 0 0) ;

// do a n y t h i n g

f r e e (t) ;

}

It’s not that easy, but not much harder

Why not just:

v o i d *m a l l o c (s i z e t s i z e){
r e t u r n s b r k (s i z e)

}

Because ...

w h i l e (1){
v o i d * t = m a l l o c (1 0 0) ;

// do a n y t h i n g

f r e e (t) ;

}

It’s not that easy, but not much harder

What do we want

� Efficient usage of memory

� Reuse of freed memory areas

� Avoid fragmentation of Heap Segment

How?

� Decrease program break if possible

� Merge freed memory areas

� Split large free memory areas to the needed size

A5 - malloc/free

Decrease program break if possible

� If there is free memory area just below the break

� Size of this memory area

1

2

3

4

5

6

program break

A5 - malloc/free

Decrease program break if possible

� If there is free memory area just below the break

� Size of this memory area

1

2

3

4

5

program break

program break

A5 - malloc/free

Merge free memory areas

� Only possible to merge with next or previous area

� We have to know the size, location and state of the areas

1

2

3

4

5

program break

program break

A5 - malloc/free

Merge free memory areas

� Only possible to merge with next or previous area

� We have to know the size, location and state of the areas

1

2

3

5

program break

program break

A5 - malloc/free

Reuse free areas/split large free memory areas to the needed size

� Search for a free memory area larger/equal than needed size

� Split to right size

� State of all memory areas and their location

� Size of the area to split

1

2

3

5

program break

program break

A5 - malloc/free

Reuse free areas/split large free memory areas to the needed size

� Search for a free memory area larger/equal than needed size

� Split to right size

� State of all memory areas and their location

� Size of the area to split

1

2

3

4

5

program break

program break

What do we have to know about the memory areas

� Is the memory area free?

� How large is the memory area?

� Location of the memory area?

Think about a structure which allows you to organise the Heap Segment

Errors you should detect

� Double free

� Out of memory

� sbrk returns 0

� Buffer overflow / memory corruption

� Special value at begin of every memory area

� Check if first word == special value

1
2
3
4
5

A5 - Task Summary

� Consider a structure to organize the memory areas

� Decrease program break if possible

� Avoid heap fragmentation

� Merge free neighboring memory areas

� Split large free memory areas to the needed size

� Detect overflows, double frees and out of mem

� Your implementation has to be POSIX compliant (manpage)

A5 - Hints

� Pointer arithmetics: int* p; p+5; – addr in p is increased by 5*sizeof(int)

� How many bytes does a pointer need? use typedef mempos in malloc.h

� Double-Linked-List of memory areas

� Mempos address = “valid addr”; int* i = (int*) address; *i = 100;

� Be careful to test the right malloc implementation ;)

Down the rabbit hole:

Underneath x86 Linux C

programs

General structure

How does a C program ”work”?

� Control starts at main

� Certain functions pass control to operating system, e.g. printf has the OS write

something to ”standard output”

� When main returns, the program terminates gracefully

� Certain errors kill the program forcefully, e.g. with a ”Segmentation fault”

C Standard Library

How does printf ”work”?

� Format string parsing, argument extraction, construct final string → trivial

� write final string to stdout filedescriptor

� write, in turn, makes a system call (syscall) with the appropriate syscall number

� The syscall transfers control to the operating system, which executes the write on the user

program’s behalf

C program start and termination

How is main called and return handled?

� Operating system does not actually run main

� Execution starts at the entry point address, where the standard library start function is

located

� Initializes standard library, obtains program arguments, calls main

� After main, exit is called with the return value of main

� exit performs a syscall that terminates the program gracefully

Odds and ends

� For C++ programs, initialization and deinitialization of global objects also has to happen

before/after main, respectively

� Disassembly of a program: objdump -d

� Some interesting info (entry point address, sections, ...): readelf -a

� What symbols are visible in your program: nm

� Which shared libraries are loaded: ldd

What’s in a C program?

� Compiler produces object files for your code

� Linker takes your object files and links it with standard library objects

� gcc -nostdlib → ”nothing” works anymore

� Provide your own standard library!

Header files and objects

� #include <stdio.h> still works, despite -nostdlib!

� Yes, but linking fails: undefined reference to ’printf’

� When compiling printf (...) , the compiler produces something like: call printf

� The linker takes all object files, assigns (”arbitrary”) addresses to all functions

� Then, all references to printf are replaced by that address

Virtual Memory

Why can the linker assign static addresses to symbols? Virtual Memory!

You’ll learn about that in OS ;)

32bit Calling conventions

Brief overview

� cdecl: ”Standard” calling convention gcc uses for C programs

� syscall (not the OS/2 one): How syscalls are called

� fastcall, thiscall, pascal, ...: For other operating systems, languages, compilers, ...

We will now look at cdecl and syscall.

cdecl

How do 32bit functions work?

� There is a stack somewhere in memory

� The register esp points to the top of the stack

� Assembly instructions push and pop use and modify esp

� Another register, ebp points to the beginning of the current ”stack frame”

� Each call of each function opens a new ”stack frame”, i.e. ebp is moved to the top of the

stack

� How to restore the old ebp when the function returns? Save it on the stack!

� Local variables and parameters are always referenced relative to ebp!

Example: function

Consider:

i n t myfunc (i n t i)

{
r e t u r n 2* i ;

}

This produces the following assembly:

pushl %ebp

movl %esp, %ebp

movl 8(%ebp), %eax

addl %eax, %eax

popl %ebp

ret

cdecl

How does the call work?

� Function refers to parameters on the stack

� So we will have to push them on the stack (right to left)

� call function

� Return value is then in eax

� Remove parameters from stack again (”caller cleanup”)

� Except for floating point values, but we won’t cover that here

Example: call

myfunc (1) ;

This produces the following assembly:

subl $4, %esp

movl $1, (%esp)

call myfunc

addl $0, %esp

syscall

How does a system call work?

� Put all parameters into registers

� Request an interrupt

� The interrupt handler will run in kernel mode and use values from registers

� Return value is then again in eax

� What happens in kernel mode? You will find out in Operating Systems!

A6 - Inline Assembly and Calling

Conventions

Function Calls

Have you ever wondered what happens in your CPU when you call a function?

Caller
int main()

{

// ...

foo();

// ...

}

Callee
void foo()

{

// do stuff...

}

Function Calls

Let’s take a look at the compiler output

objdump -d <executable>

Caller (ASM)
main:

...

call foo

...

Callee (ASM)
foo:

do stuff...

ret

Function Calls

Caller (ASM)
main:

...

call foo

...

Callee (ASM)
foo:

do stuff...

ret

Stack

%rsp

Function Calls

Caller (ASM)
main:

...

call foo

...

Callee (ASM)
foo:

do stuff...

ret

Stack

%rsp

Call instruction pushes return

address onto stack and jumps to

target

Function Calls

Caller (ASM)
main:

...

call foo

...

Callee (ASM)
foo:

do stuff...

ret

Stack

%rspReturn Addr.

Call instruction pushes return

address onto stack and jumps to

target

Function Calls

Caller (ASM)
main:

...

call foo

...

Callee (ASM)
foo:

do stuff...

ret

Stack

%rspReturn Addr.

Call instruction pushes return

address onto stack and jumps to

target

Function Calls

Caller (ASM)
main:

...

call foo

...

Callee (ASM)
foo:

do stuff...

ret

Stack

%rspReturn Addr.

Ret instruction pops return ad-

dress from stack and jumps back

Function Calls

Caller (ASM)
main:

...

call foo

...

Callee (ASM)
foo:

do stuff...

ret

Stack

%rsp

Return Addr.

Ret instruction pops return ad-

dress from stack and jumps back

Function Calls

Caller (ASM)
main:

...

call foo

...

Callee (ASM)
foo:

do stuff...

ret

Stack

%rsp

Return Addr.

Ret instruction pops return ad-

dress from stack and jumps back

Function Arguments

Easy enough, but what about function arguments and return values?

Caller
int main()

{

char arg1 = 5;

char arg2 = 7;

int retval = foo(arg1, arg2);

}

Callee
int foo(char a, char b)

{

return a > b;

}

How does this...

Function Arguments

Easy enough, but what about function arguments and return values?

Caller
int main()

{

char arg1 = 5;

char arg2 = 7;

int retval = foo(arg1, arg2);

}

Callee
int foo(char a, char b)

{

return a > b;

}

How does this...

...get here?

Function Arguments

Easy enough, but what about function arguments and return values?

Caller
int main()

{

char arg1 = 5;

char arg2 = 7;

int retval = foo(arg1, arg2);

}

Callee
int foo(char a, char b)

{

return a > b;

}

And this...

Function Arguments

Easy enough, but what about function arguments and return values?

Caller
int main()

{

char arg1 = 5;

char arg2 = 7;

int retval = foo(arg1, arg2);

}

Callee
int foo(char a, char b)

{

return a > b;

}

And this...

...back here?

Function Arguments

Where do we put the function arguments?

� Registers

� Which ones?

� What if we don’t have enough registers?

� Memory (i.e. on the stack)

� In which order?

Function Arguments

Where do we put the function arguments?

� Registers

� Which ones?

� What if we don’t have enough registers?

� Memory (i.e. on the stack)

� In which order?

Function Arguments

Where do we put the function arguments?

� Registers

� Which ones?

� What if we don’t have enough registers?

� Memory (i.e. on the stack)

� In which order?

Function Arguments

Where do we put the function arguments?

� Registers

� Which ones?

� What if we don’t have enough registers?

� Memory (i.e. on the stack)

� In which order?

Function Arguments

Where do we put the function arguments?

� Registers

� Which ones?

� What if we don’t have enough registers?

� Memory (i.e. on the stack)

� In which order?

Function Arguments

Where do we put the function arguments?

� Registers

� Which ones?

� What if we don’t have enough registers?

� Memory (i.e. on the stack)

� In which order?

Calling Conventions

A calling convention defines the interaction between functions on the level of CPU-instructions

� Function parameters

� Return values

� Registers that need to be saved/restored across function calls

Calling Conventions

Calling conventions are not only relevant within a single binary. All interfaces between binary

modules need to conform to a common interface to be compatible.

� Object files that are linked together at compile time

� Dynamically loaded libraries (e.g. libc)

⇒ Defined as part of an ABI (Application Binary Interface)

� A complete ABI also defines the executable format (e.g. ELF), instruction set, ...

Calling Conventions

Calling conventions are not only relevant within a single binary. All interfaces between binary

modules need to conform to a common interface to be compatible.

� Object files that are linked together at compile time

� Dynamically loaded libraries (e.g. libc)

⇒ Defined as part of an ABI (Application Binary Interface)

� A complete ABI also defines the executable format (e.g. ELF), instruction set, ...

Calling Conventions

Calling conventions are not only relevant within a single binary. All interfaces between binary

modules need to conform to a common interface to be compatible.

� Object files that are linked together at compile time

� Dynamically loaded libraries (e.g. libc)

⇒ Defined as part of an ABI (Application Binary Interface)

� A complete ABI also defines the executable format (e.g. ELF), instruction set, ...

Calling Conventions

The used ABI/calling convention depends on

� CPU architecture

� Operating system

� Compiler

Mostly standardized

Calling Conventions

The used ABI/calling convention depends on

� CPU architecture

� Operating system

� Compiler

Mostly standardized

Calling Conventions

Commonly used calling conventions

Linux Windows

i386 cdecl cdecl, stdcall, fastcall, ...

x86 64 System V amd64 ABI Microsoft x64

System calls usually use a different calling convention than the rest of the userspace

Calling Conventions

Linux Windows

i386 cdecl cdecl, stdcall, fastcall, ...

x86 64 System V amd64 ABI Microsoft x64

Main difference: Function arguments on stack vs. in registers

GCC Inline Assembly

In this assignment you will need to write (inline) assembly.

No C code allowed!

GCC Inline Assembly

GCC allows you to write assembly code inside C functions

GCC Inline Assembly
int foobar(uint64_t* result) {

uint64_t a = 3;

uint64_t b = 4;

asm("movq %[op1], %%rax\n"

"addq %[op2], %%rax\n"

"movq %%rax, %[res]\n"

:[res]"=m"(*result) // output (memory location, not value)

:[op1]"m"(a), // input (op1 in memory)

[op2]"r"(b) // (op2 in register)

:"rax", "cc"); // clobbers the rax register and status flags ("m" output

constraint -> no need to explicity list "memory")

}

Your Tasks

Tasks

� Task 1 - Use the cpuid instruction to read information about the CPU

� Manufacturer id string (GenuineIntel, AuthenticAMD, ...)

� Processor brand string (Intel(R) Core(TM) i7-4760HQ CPU @ 2.10GHz)

� SIMD support (SSE, SSE2, SSE3, SSSE3, SSE4.1, SSE4.2, AVX, AVX2, AVX512

Foundation)

� Task 2a - Call a function in inline assembly - System V amd64 ABI (64-bit)

� Tasks 2b - Implement a function in assembly (x86 64-bit)

Tasks

� Task 1 - Use the cpuid instruction to read information about the CPU

� Manufacturer id string (GenuineIntel, AuthenticAMD, ...)

� Processor brand string (Intel(R) Core(TM) i7-4760HQ CPU @ 2.10GHz)

� SIMD support (SSE, SSE2, SSE3, SSSE3, SSE4.1, SSE4.2, AVX, AVX2, AVX512

Foundation)

� Task 2a - Call a function in inline assembly - System V amd64 ABI (64-bit)

� Tasks 2b - Implement a function in assembly (x86 64-bit)

Tasks

� Task 1 - Use the cpuid instruction to read information about the CPU

� Manufacturer id string (GenuineIntel, AuthenticAMD, ...)

� Processor brand string (Intel(R) Core(TM) i7-4760HQ CPU @ 2.10GHz)

� SIMD support (SSE, SSE2, SSE3, SSSE3, SSE4.1, SSE4.2, AVX, AVX2, AVX512

Foundation)

� Task 2a - Call a function in inline assembly - System V amd64 ABI (64-bit)

� Tasks 2b - Implement a function in assembly (x86 64-bit)

Tasks

� Task 1 - Use the cpuid instruction to read information about the CPU

� Manufacturer id string (GenuineIntel, AuthenticAMD, ...)

� Processor brand string (Intel(R) Core(TM) i7-4760HQ CPU @ 2.10GHz)

� SIMD support (SSE, SSE2, SSE3, SSSE3, SSE4.1, SSE4.2, AVX, AVX2, AVX512

Foundation)

� Task 2a - Call a function in inline assembly - System V amd64 ABI (64-bit)

� Tasks 2b - Implement a function in assembly (x86 64-bit)

Tasks

� Task 1 - Use the cpuid instruction to read information about the CPU

� Manufacturer id string (GenuineIntel, AuthenticAMD, ...)

� Processor brand string (Intel(R) Core(TM) i7-4760HQ CPU @ 2.10GHz)

� SIMD support (SSE, SSE2, SSE3, SSSE3, SSE4.1, SSE4.2, AVX, AVX2, AVX512

Foundation)

� Task 2a - Call a function in inline assembly - System V amd64 ABI (64-bit)

� Tasks 2b - Implement a function in assembly (x86 64-bit)

Tasks

� Task 1 - Use the cpuid instruction to read information about the CPU

� Manufacturer id string (GenuineIntel, AuthenticAMD, ...)

� Processor brand string (Intel(R) Core(TM) i7-4760HQ CPU @ 2.10GHz)

� SIMD support (SSE, SSE2, SSE3, SSSE3, SSE4.1, SSE4.2, AVX, AVX2, AVX512

Foundation)

� Task 2a - Call a function in inline assembly - System V amd64 ABI (64-bit)

� Tasks 2b - Implement a function in assembly (x86 64-bit)

	Down the rabbit hole: Underneath x86 Linux C programs
	C Programs
	Linking
	Function calls

	A6 - Inline Assembly and Calling Conventions

