
SSD Name:
Winter Term 2020
Exam 1 Immatriculation Number:
18.12.2020
Time Limit: 30 Minutes

You may not use your books, notes, or any additional material on this exam.

Since this is an oral exam with a limited time frame, the student will develop the answers in
interaction with the examiner.

Question Points Score

1 10

2 10

3 10

4 10

Total: 40



SSD Exam 1 - Page 2 of 8 18.12.2020

1. (10 points) Memory Safety
You find the following code snippet:

1 # i n c l u d e <stdio.h>
2 # i n c l u d e <stdlib .h>
3 # i n c l u d e <string .h>
4
5 int main () {
6 char * a = malloc (8);
7 strcpy (a, "AAAA");
8 char * b = malloc (8);
9 strcpy (b, "BBBB");

10 realloc (a, 32);
11 char * c = malloc (8);
12 strcpy (a, " aaaaaa ");
13 strcpy (c, "CCCC");
14
15 printf ("%s\n", a);
16 }

(a) (2 points) What is/are the bug(s) in the program? Pinpoint code location(s) and type of
the bug(s).

(b) (2 points) What is a potential output of this program?
(c) (4 points) Sketch the heap after each allocation (i.e. malloc and realloc).
(d) (2 points) How would you fix the program?



SSD Exam 1 - Page 3 of 8 18.12.2020

2. (10 points) Exploits
I found a 32-bit strange-looking code snippet on my system and decompiled it:
00000000 6631 C0 xor eax , eax
00000003 6650 push eax

00000005 66682 F7A7368 push dword 0 x68737a2f
0000000 B 66682 F62696E push dword 0 x6e69622f
00000011 6689 E3 mov ebx , esp
00000014 6631 C9 xor ecx , ecx
00000017 6631 D2 xor edx , edx
0000001 A B00B mov al ,0xb
0000001 C CD80 int 0x80
0000001 E 6631 C0 xor eax , eax
00000021 B001 mov al ,0x1
00000023 CD80 int 0x80

(a) (1 point) Which register holds the syscall number in the x86 32 Linux calling convention?
(b) (1 point) Which Linux syscall is used to load and run an ELF binary?
(c) (3 points) Sketch the stack layout.
(d) (4 points) What does the above snippet do? How is such a code snippet usually called?
(e) (1 point) How would you prevent this issue?



SSD Exam 1 - Page 4 of 8 18.12.2020

3. (10 points) Finding Bugs
A customer called you at 11pm to ask what has happened to his binary. He managed to run it
with the address sanitizer ASAN. Here’s the output he sent you.
==2671== ERROR : AddressSanitizer : stack -buffer - overflow on address 0 x7ffd5cc814ea at pc 0

x7fbaba6f7709 bp 0 x7ffd5cc814a0 sp 0 x7ffd5cc80c48
WRITE of size 11 at 0 x7ffd5cc814ea thread T0

#0 0 x7fbaba6f7708 (/ usr/lib/x86_64 -linux -gnu/ libasan .so .2+0 x62708 )
#1 0 x400924 in main (/ home/ssd/main +0 x400924 )
#2 0 x7fbaba2eb83f in __libc_start_main (/ lib/x86_64 -linux -gnu/libc.so .6+0 x2083f )
#3 0 x400788 in _start (/ home/ssd/main +0 x400788 )

Address 0 x7ffd5cc814ea is located in stack of thread T0 at offset 42 in frame
#0 0 x400865 in main (/ home/ssd/main +0 x400865 )

This frame has 1 object (s):
[32 , 42) ’password ’ <== Memory access at offset 42 overflows this variable

...
SUMMARY : AddressSanitizer : stack -buffer - overflow ??:0 ??
Shadow bytes around the buggy address :

0 x10002b988280 : 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
=>0 x10002b988290 : 00 00 00 00 00 00 00 00 f1 f1 f1 f1 00[02] f4 f4

0 x10002b9882a0 : f3 f3 f3 f3 00 00 00 00 00 00 00 00 00 00 00 00
0 x10002b9882b0 : 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00

Shadow byte legend (one shadow byte represents 8 application bytes ):
Addressable : 00
Partially addressable : 01 02 03 04 05 06 07
Heap left redzone : fa Stack use after scope : f8
Heap right redzone : fb Global redzone : f9
Freed heap region : fd Global init order : f6
Stack left redzone : f1 Poisoned by user: f7
Stack mid redzone : f2 Container overflow : fc
Stack right redzone : f3 Array cookie : ac
Stack partial redzone : f4 Intra object redzone : bb
Stack after return : f5 ASan internal : fe

(a) (5 points) Provide a small code snippet that could lead to this kind of crash.
(b) (2 points) Which bugs can be detected by ASAN?
(c) (2 points) What are limitations of ASAN?
(d) (1 point) How does ASAN ensure it catches those bugs?



SSD Exam 1 - Page 5 of 8 18.12.2020

4. (10 points) Defensive Programming
1 # i n c l u d e <stdio.h>
2 # i n c l u d e <assert .h>
3
4 # d ef in e PRINT_ERROR (msg , err) fprintf (stderr , \
5 "%s threw an error: %s, returning %d\n", \
6 __func__ , (msg), ( int )(err)); \
7 re tu rn (err);
8
9 int main( int argc , char ** argv) {

10 assert (argc >= 3);
11 FILE* f = fopen(argv [1], "w");
12 if (!f) { PRINT_ERROR (" Unable to open file", -1); }
13 // ...
14 assert (f != NULL);
15 assert (argc >= 3);
16 assert ( fprintf (f, "Your input: %s\n", argv [2]) > 0);
17 // ...
18 assert (f != NULL);
19 fclose (f);
20 re tu rn 0;
21 }

(a) (8 points) Explain four defensive programming principles which are related to the above
code. Were these principles followed or not?

(b) (1 point) Describe what the purpose of asserts is and how they shall be used
(c) (1 point) How can compilers assist in improving code quality?



SSD Exam 1 - Page 6 of 8 18.12.2020

Appendix: ASCII Table

Hex Dec Char Hex Dec Char Hex Dec Char Hex Dec Char
0x00 0 NULL (null) 0x20 32 space 0x40 64 @ 0x60 96 ‘

0x01 1 SOH (start of heading) 0x21 33 ! 0x41 65 A 0x61 97 a

0x02 2 STX (start of text) 0x22 34 " 0x42 66 B 0x62 98 b

0x03 3 ETX (end of text) 0x23 35 # 0x43 67 C 0x63 99 c

0x04 4 EOT (end of transmission) 0x24 36 $ 0x44 68 D 0x64 100 d

0x05 5 ENQ (enquiry) 0x25 37 % 0x45 69 E 0x65 101 e

0x06 6 ACK (acknowledge) 0x26 38 & 0x46 70 F 0x66 102 f

0x07 7 BELL (bell) 0x27 39 ’ 0x47 71 G 0x67 103 g

0x08 8 BS (backspace) 0x28 40 ( 0x48 72 H 0x68 104 h

0x09 9 TAB (horizontal tab) 0x29 41 ) 0x49 73 I 0x69 105 i

0x0a 10 LF (new line) 0x2a 42 * 0x4a 74 J 0x6a 106 j

0x0b 11 VT (vertical tab) 0x2b 43 + 0x4b 75 K 0x6b 107 k

0x0c 12 FF (form feed) 0x2c 44 , 0x4c 76 L 0x6c 108 l

0x0d 13 CR (carriage return) 0x2d 45 - 0x4d 77 M 0x6d 109 m

0x0e 14 SO (shift out) 0x2e 46 . 0x4e 78 N 0x6e 110 n

0x0f 15 SI (shift in) 0x2f 47 / 0x4f 79 O 0x6f 111 o

0x10 16 DLE (data link escape) 0x30 48 0 0x50 80 P 0x70 112 p

0x11 17 DC1 (device control 1) 0x31 49 1 0x51 81 Q 0x71 113 q

0x12 18 DC2 (device control 2) 0x32 50 2 0x52 82 R 0x72 114 r

0x13 19 DC3 (device control 3) 0x33 51 3 0x53 83 S 0x73 115 s

0x14 20 DC4 (device control 4) 0x34 52 4 0x54 84 T 0x74 116 t

0x15 21 NAK (negative ack) 0x35 53 5 0x55 85 U 0x75 117 u

0x16 22 SYN (synchronous idle) 0x36 54 6 0x56 86 V 0x76 118 v

0x17 23 ETB (end transmission) 0x37 55 7 0x57 87 W 0x77 119 w

0x18 24 CAN (cancel) 0x38 56 8 0x58 88 X 0x78 120 x

0x19 25 EM (end of medium) 0x39 57 9 0x59 89 Y 0x79 121 y

0x1a 26 SUB (substitute) 0x3a 58 : 0x5a 90 Z 0x7a 122 z

0x1b 27 FSC (escape) 0x3b 59 ; 0x5b 91 [ 0x7b 123 {

0x1c 28 FS (file separator) 0x3c 60 < 0x5c 92 \ 0x7c 124 |

0x1d 29 GS (group separator) 0x3d 61 = 0x5d 93 ] 0x7d 125 }

0x1e 30 RS (record separator) 0x3e 62 > 0x5e 94 ˆ 0x7e 126 ˜

0x1f 31 US (unit separator) 0x3f 63 ? 0x5f 95 0x7f 127 DEL



SSD Exam 1 - Page 7 of 8 18.12.2020

Appendix: C Function Reference

This appendix provides a short summary of C library functions used in the code snippets. The descrip-
tions are partly taken from “The C Library Reference Guide” by Eric Huss.

fopen: FILE *fopen(const char *path, const char *mode)
Opens the filename pointed to by filename. The mode argument may be one of the following
constant strings:
”r” read text mode

”w” write text mode (truncates file to zero length or creates new file)
”r+” read and write text mode

On success a pointer to the file stream is returned. On failure a null pointer is returned.
fprintf: int fprintf(FILE *stream, const char *format, ...)

Performs printf functionality on the provided FILE stream (instead of stdio) and returns the
number of characters written, excluding the string null terminator. On error, a negative value is
returned.

fclose: int fclose(FILE *stream)
Closes the stream. All buffers are flushed. If successful, it returns zero. On error it returns EOF.

strcpy: char *strcpy(char *str1, const char *str2)
Copies the string pointed to by str2 to str1. Copies up to and including the null character of str2.
If str1 and str2 overlap the behavior is undefined. Returns the argument str1.

strncpy: char *strncpy(char *str1, const char *str2, size t n)
Copies up to n characters from the string pointed to by str2 to str1. Copying stops when n
characters are copied or the terminating null character in str2 is reached. If the null character
is reached, the null characters are continually copied to str1 until n characters have been copied.
Returns the argument str1.

malloc: void *malloc(size t size)
Allocates the requested memory and returns a pointer to it. The requested size is size bytes. The
value of the space is indeterminate. On success a pointer to the requested space is returned. On
failure a null pointer is returned.

realloc: void *realloc(void *ptr, size t size)
Attempts to resize the memory block pointed to by ptr that was previously allocated with a call
to malloc or calloc. The contents pointed to by ptr are unchanged. If the value of size is greater
than the previous size of the block, then the additional bytes have an undeterminate value. If the
value of size is less than the previous size of the block, then the difference of bytes at the end of
the block are freed. On success a pointer to the memory block is returned (which may be in a
different location as before). On failure or if size is zero, a null pointer is returned.

system: int system(const char *string)
The command specified by string is passed to the host environment to be executed by the command
processor. A null pointer can be used to inquire whether or not the command processor exists. If
string is a null pointer and the command processor exists, then zero is returned. All other return
values are implementation-defined.

printf: int printf(const char *format, ...)
This function takes the format string specified by the format argument and applies each following
argument to the format specifiers in the string in a left to right fashion. Each character in the
format string is copied to the stream except for conversion characters which specify a format
specifier.

execv: int execv(const char *path, char *const argv[])
Replaces the current process image with a new process image specified in path. The execv()
function provide an array of pointers (argv) to null-terminated strings that represent the argument
list available to the new program. The first argument should point to the filename associated with
the file being executed. The array of pointers must be terminated by a null pointer.



SSD Exam 1 - Page 8 of 8 18.12.2020

Appendix: 32-bit Linux Syscall List

Nr. Name EAX EBX ECX EDX ESI EDI
1 sys exit 0x01 int exit code - - - -

2 sys fork 0x02 - - - - -

3 sys read 0x03 unsigned int fd char *buf size t count - -

4 sys write 0x04 unsigned int fd const char *buf size t count - -

5 sys open 0x05 const char *filename int flags int mode - -

6 sys close 0x06 unsigned int fd - - - -

7 sys waitpid 0x07 pid t pid int *stat addr int options - -

8 sys creat 0x08 const char *pathname int mode - - -

9 sys link 0x09 const char *oldname const char *newname - - -

10 sys unlink 0x0a const char *pathname - - - -

11 sys execve 0x0b const char *filename const char **argv const char **envp - -

12 sys chdir 0x0c const char *filename - - - -

13 sys time 0x0d time t *tloc - - - -

14 sys mknod 0x0e const char *filename int mode unsigned dev - -

15 sys chmod 0x0f const char *filename mode t mode - - -

16 sys lchown16 0x10 const char *filename old uid t user old gid t group - -

19 sys lseek 0x13 unsigned int fd off t offset unsigned int origin - -

20 sys getpid 0x14 - - - - -

26 sys ptrace 0x1a long request long pid long addr long data -

37 sys kill 0x25 int pid int sig - - -

88 sys reboot 0x58 int magic1 int magic2 unsigned int cmd void *arg -

125 sys mprotect 0x7d unsigned long start size t len unsigned long prot - -

Appendix: 64-bit Linux Syscall List

Nr. Name RAX RDI RSI RDX R10 R8
0 sys read 0x00 unsigned int fd char *buf size t count - -

1 sys write 0x01 unsigned int fd const char *buf size t count - -

2 sys open 0x02 const char *filename int flags int mode - -

3 sys close 0x03 unsigned int fd - - - -

10 sys mprotect 0x0a unsigned long start size t len unsigned long prot - -

59 sys execve 0x3b const char *filename const char **argv const char **envp - -

60 sys exit 0x3c int exit code - - - -


