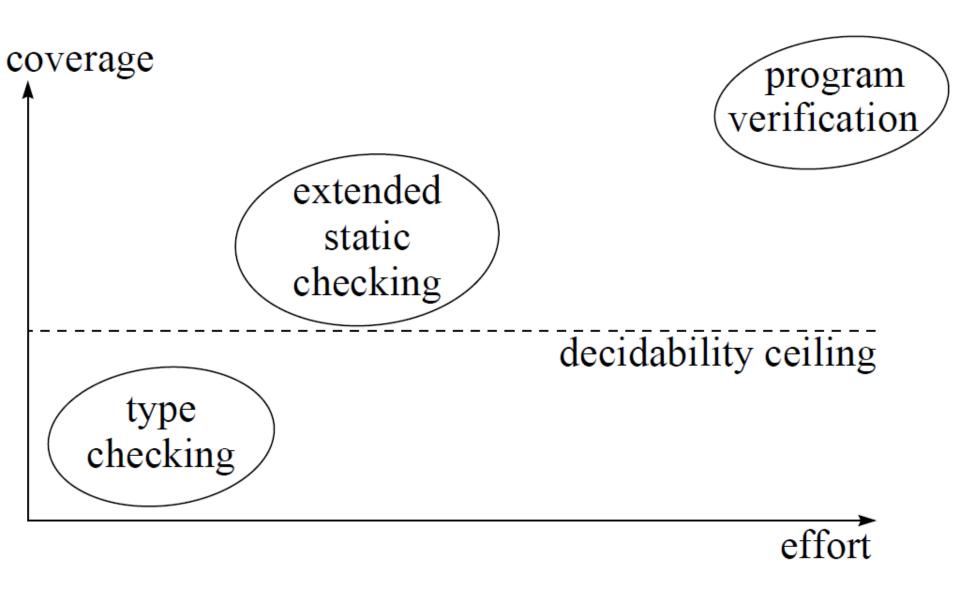


Program Verification with Dafny


Benedikt Maderbacher

IAIK – Graz University of Technology firstname.lastname@iaik.tugraz.at

Name Place, Date Title

Interactive Theorem Prover

- Checks if a program is correct
 - with help of from the user
- User provides:
 - annotations
 - manual proofs for some properties

Interactive Theorem Provers

- Dafny
 - Hoare Logic
- Coq, Lean, Agda, F*
 - Depended Type Theory
- Isabelle/HOL, HOL Light
 - Higher Order Logic

Applications

- CompCert
 - A verified compiler (Coq)
- seL4
 - A verified micro kernel (Isabelle/HOL)
- Project Everest
 - A verified network stack (multiple)

Demo: Dafny

Total Correctness

Proof that a program is correct and terminates.

Show that a loop can't run forever.

Total Correctness

Assignment axiom for total correctness

$$\vdash [P[E/V]] V := E[P]$$

Precondition strengthening for total correctness

$$\frac{\vdash P \Rightarrow P', \qquad \vdash [P'] \ C \ [Q]}{\vdash [P] \ C \ [Q]}$$

Postcondition weakening for total correctness

$$\frac{\vdash [P] \ C \ [Q'], \qquad \vdash \ Q' \Rightarrow Q}{\vdash \ [P] \ C \ [Q]}$$

Conditional rule for total correctness

$$\frac{\vdash \ [P \land S] \ C_1 \ [Q], \qquad \vdash \ [P \land \neg S] \ C_2 \ [Q]}{\vdash \ [P] \ \mathsf{IF} \ S \ \mathsf{THEN} \ C_1 \ \mathsf{ELSE} \ C_2 \ [Q]}$$

Sequencing rule for total correctness

$$\frac{\vdash [P] C_1 [Q], \quad \vdash [Q] C_2 [R]}{\vdash [P] C_1; C_2 [R]}$$

Total Correctness

Proof that a program is correct and terminates.

Use a variant to show a loop can't run forever.

In Dafny this is annotated with decreases.

Total Correctness

WHILE-rule for total correctness

where E is an integer-valued expression and n is an auxiliary variable not occurring in P, C, S or E.

Total Correctness

Assignment axiom for total correctness

$$\vdash [P[E/V]] V := E[P]$$

- Only works if E terminates!
- All functions calls must terminate.
 - Can be done similar to while loops.

Frame Rules

 Define what areas of the heap a method/function may access.

- reads
 - What a function/predicate can read.

- modifies
 - What a method can write

Frame Rules

Local reasoning over mutable state.

Make proofing larger programs feasible.