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Motivation

• Applications and Systems may handle valueable
information

• Modern applications are connected by some type of
network

• High complexity of systems

• Complexity brings vulnerabilities

• Systems are constantly attacked
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Security Properties

The central security properties

• Confidentialty→ Information is not made available to unauthorized entities

• Integrity

→ Changes can only be done in a specific and authorized manner

• Availability

→ Timely and reliable access to the information

• Authencity

→ Assure that information is from the source it claims to be from

Security properties define what makes assets valuable
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Root of Trust

Combines trusted hardware with a small amount of trusted software to provide the
trusted functionalities [1]

• Foundational security component of a device

• Set of implicitly trusted functions

• Rest of the system or device can use to ensure security

• Developer can build up ”Trust Chain“
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Secure Execution in a Nutshell

Computing environments designed for secure execution

• Isolated environment

• Unique cryptographic keys

• Trusted software

• Limited set of interfaces
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Co-Processors Hardware Accelerators



Co-Processors

Computing hardware made to perform some sort functions more efficiently than it
would be possible in software running on a CPU

• Higher performance

• Increase throughput

• Decrease latency

• Reduced power consumption
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Security Co-Processors

Cryptographic accelerators are Co-Processor designed specifically to perform
computationally intensive cryptographic operations

• Encryption/Decryption

• Hashing

• Big number computations

• Random number generator
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Security Co-Processors cont.

Examples of Security Co-Processors

• Intels AES-NI [2]
• AESENC

• AESDEC

• Ascon-p instruction extension [4]
• Ascon-p

• Lattice-based cryptography Co-Processor [5]
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Ascon-p Instruction Extension

Ascon sponge based AEAD scheme [3]

• 320-bit state in 5 · 64-bit lanes

• Choose Rate 64/128 bits

• Ascon-p permutation function

Ascon-p permutation

• Round constant addition

• Substituion layer

• Linear layer
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Ascon-p Co-Processor Integration

Mode remains in software, basic Ascon-p building block in hardware [4]

• Integration into RI5CY core

• Definition of instruction encoding

• Modification of Register file

• Add instruction to the Decoder
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Ascon-p Instruction Format

31 20 19 15 14 12 11 7 6 0

endianess, rounds, constant rs1 funct3 rd opcode I-type

Immediate encoding 12-bit

• Round Constant [27:20]

• Number of rounds [30:28]

• Endianess [31:30]

Ascon-p instruction

• opcode = b’0001011

• funct3 = b’011

• rd, rs1 unused
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Ascon-p Instruction Extension cont.

Ascon-p accelerator [4]

• Significant performance increase
• Basic building block of Ascon and ISAP

• Authenticated encryption
• Hashing
• Pseudorandom number generation

• Hardening against implementation attacks
• DPA, DFA, SFA

• Low area design
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Communication

How does the CPU communicate with the Co-Processor?

• Control
• Direct control via Co-Processor instructions
• Independent processors works asynchronously

• Connected over a bus
• e.g. AXI

• Data transfer
• Direct Memory Access (DMA)

12/27



Direct Memory Access

DMA is a hardware solution to tranfering data from one place to another

• Interface between data producer/consumer and a memory controller
• Store data into memory
• Send data from memory

• Time consuming for the processor

• CPU should do intelligent things
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Hardware Root of Trust



Secure Element

Secure Element is a hardware device component [6]

• Tamper-resistant hardware platform

• Store confidential and cryptographic data

• Keys are never externally available outside the chip

• Dedicated crypto hardware protected against attacks
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Google Titan M

Titan M is a security chip
• Reduce the attack surface

• Physical isolation
• Mitigates hardware-level exploits

• Firmware is Open-Source
• Only signable by Google
• Verifiable binary builds

Google Device Security Group [7]
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Google Titan M cont.

Hardware based Root of Trust

• ARM Cortex-M3 CPU
• Hardware Accelerators

• AES, SHA, HMAC
• Big number Co-Processor for public

key algorithms
• True Random Number Generator

Google Device Security Group [7]
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OpenTitan

Open source silicon Root of Trust project
• Maintained by lowRisc, not Google

• Ibex core
• RISC-V

• Trust and Security
• Design and implementation

transparency
• Contributions to the design

OpenTitan Project [8]
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OpenTitan cont.

Cryptographic Co-Processors
• Symmetric Key Algorithms

• AES-128/192/256
• Mode: ECB, CBC, CFB, OFB, CTR

• Asymmetric Key Algorithms
• RSA-3072-bit
• ECDSA P-256

• Hash Algorithm SHA256

• TRNG
OpenTitan Project [8]
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Secure Enclave

Secure element inside same chip package as CPU [9]

• Dedicated Co-Processor for Apple A7 (or newer)

• Isolated from the main processor

• Integrity of cryptographic operations
Apple A7 [10]
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Secure Enclave cont.

Generating cryptographic keys

• Dedicated AES 256 crypto engine

• Crypto engine uses DMA

• Random Number Generator (CTR DRBG)

• Key erasure when needed
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Secure Enclave cont.

Fused AES 256 keys
• Unique Device ID (UID)

• Derive AES keys for data
encryption

• Device Group ID (GID)
• Common to all processors of device

class (A8) Secure Enclave [10]

21/27



Comparison

Security Co-Processor

+ Advantages
• Accelerate system performance
• Reduced power consumption
• Isolation
• High tamper-resistance
• Designed to defend against various

attacks

- Disadvantages
• Slower times to market
• Decreased portability
• Less flexibility
• Lack of updating features or

patching bugs
• Higher cost
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Summary

Isolation
• Isolation allows protecting applications even if

environment gets compromised

• Less shared resources → better isolation

Security Co-Processors
• Accelerate system performance

• Increase system security

Cryptographic accelerators
• Encryption/Decryption

• Random number generator

Direct Memory Access
• Hardware solution to transfering data

• Store data into memory

• Send data from memory
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