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Applications and Systems may handle valueable
information

Modern applications are connected by some type of
network

High complexity of systems
Complexity brings vulnerabilities
Systems are constantly attacked
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Security Properties

The central security properties

» Confidentialty — Information is not made available to unauthorized entities
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Security Properties

The central security properties

» Confidentialty
* Integrity — Changes can only be done in a specific and authorized manner
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Security Properties

The central security properties

» Confidentialty
* Integrity
+ Availability — Timely and reliable access to the information
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Security Properties

The central security properties
» Confidentialty
* Integrity
+ Availability
» Authencity — Assure that information is from the source it claims to be from
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Security Properties

The central security properties

» Confidentialty
* Integrity

+ Availability

+ Authencity

Security properties define what makes assets valuable
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Root of Trust

Combines trusted hardware with a small amount of trusted software to provide the
trusted functionalities [1]

» Foundational security component of a device

« Set of implicitly trusted functions

* Rest of the system or device can use to ensure security
 Developer can build up ,Trust Chain®
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Secure Execution in a Nutshell

Computing environments designed for secure execution

Isolated environment

» Unique cryptographic keys

Trusted software

Limited set of interfaces
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Co-Processors Haraware Accelerators



Co-Processors

Computing hardware made to perform some sort functions more efficiently than it
would be possible in software running on a CPU

* Higher performance

* Increase throughput

» Decrease latency

* Reduced power consumption
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Security Co-Processors

Cryptographic accelerators are Co-Processor designed specifically to perform
computationally intensive cryptographic operations

Encryption/Decryption
* Hashing
 Big number computations

* Random number generator
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Security Co-Processors cont.

Examples of Security Co-Processors

« Intels AES-NI [2]

* AESENC
* AESDEC

» Ascon-p instruction extension [4]

* Ascon-p

» Lattice-based cryptography Co-Processor [5]
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Ascon-p Instruction Extension

Ascon sponge based AEAD scheme [3] Ascon-p permutation
+ 320-bit state in 5 - 64-bit lanes * Round constant addition
» Choose Rate 64/128 bits  Substituion layer

» Ascon-p permutation function * Linear layer
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Ascon-p Co-Processor Integration

Mode remains in software, basic Ascon-p building block in hardware [4]

* Integration into RI5CY core

+ Definition of instruction encoding
» Modification of Register file

+ Add instruction to the Decoder
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Ascon-p Instruction Format

31 20 19 15 14 12 11 76 0
| endianess, rounds, constant | rst [funct3 | rd | opcode |I-type
Immediate encoding 12-bit Ascon-p instruction
* Round Constant [27:20] » opcode = b’0001011
* Number of rounds [30:28] » funct3 =b’011
» Endianess [31:30] * rd, rs1 unused
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Ascon-p Instruction Extension cont.

Ascon-p accelerator [4]

« Significant performance increase
» Basic building block of Ascon and ISAP

 Authenticated encryption
» Hashing
* Pseudorandom number generation

» Hardening against implementation attacks
» DPA, DFA, SFA

* Low area design
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Communication

How does the CPU communicate with the Co-Processor?

« Control

+ Direct control via Co-Processor instructions
* Independent processors works asynchronously

» Connected over a bus
* e.g. AXI
» Data transfer
* Direct Memory Access (DMA)
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Direct Memory Access

DMA is a hardware solution to tranfering data from one place to another

* Interface between data producer/consumer and a memory controller

« Store data into memory
» Send data from memory

 Time consuming for the processor
» CPU should do intelligent things
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Hardware Root of Trust




Secure Element

Secure Element is a hardware device component [6] L

» Tamper-resistant hardware platform

 Store confidential and cryptographic data

» Keys are never externally available outside the chip
i
» Dedicated crypto hardware protected against attacks
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Google Titan M

Titan M is a security chip
* Reduce the attack surface

» Physical isolation
« Mitigates hardware-level exploits

» Firmware is Open-Source

» Only signable by Google
 Verifiable binary builds

Google Device Security Group [7]
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Google Titan M cont.

Titan M
TESTABILITY E
=
Hardware based Root of Trust
* ARM Cortex-M3 CPU
 Hardware Accelerators e AR o
* AES, SHA, HMAC % :
« Big number Co-Processor for public — —— .
key algorithms = O
« True Random Number Generator -
[ e [ [ [ ]

Google Device Security Group [7]
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OpenTitan

Open source silicon Root of Trust project
» Maintained by lowRisc, not Google
* Ibex core
. RISCV = opentitan
* Trust and Security

» Design and implementation OpenTitan Project [8]
transparency
 Contributions to the design
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OpenTitan cont.

Traditional RoT OpenTitan

Cryptographic Co-Processors -

« Symmetric Key Algorithms ooty
- AES-128/192/256 s
- Mode: ECB, CBC, CFB, OFB, CTR R
» Asymmetric Key Algorithms
+ RSA-3072-bit
* ECDSA P-256 —— -
» Hash Algorithm SHA256 o iy
* TRNG proprieary [N
OpenTitan Project [8]

Silicon
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Secure Enclave

LOTOS6EE 869014V

Secure element inside same chip package as CPU [9]
» Dedicated Co-Processor for Apple A7 (or newer)
* |solated from the main processor

* Integrity of cryptographic operations
Apple A7 [10]
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Secure Enclave cont.

Generating cryptographic keys
» Dedicated AES 256 crypto engine
* Crypto engine uses DMA
* Random Number Generator (CTR_DRBG)
* Key erasure when needed
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Secure Enclave cont.

Fused AES 256 keys
» Unique Device ID (UID)

» Derive AES keys for data
encryption

» Device Group ID (GID)

» Common to all processors of device
class (A8)

Secure Enclave Processor

Hardware UID — Media Key

a

Password —b\

User Records
Volume

a a Metadata
Class Key = Volume Key ™ and Contents

Secure Enclave [10]
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Comparison

Security Co-Processor

Advantages - Disadvantages
 Accelerate system performance + Slower times to market
+ Reduced power consumption + Decreased portability
* Isolation * Less flexibility
» High tamper-resistance  Lack of updating features or
 Designed to defend against various patching bugs
attacks  Higher cost
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Summary

Isolation Security Co-Processors
« Isolation allows protecting applications even if + Accelerate system performance

environment gets compromised .
* Increase system security

» Less shared resources — better isolation ]
Cryptographic accelerators

» Encryption/Decryption

» Random number generator

Direct Memory Access
» Hardware solution to transfering data

» Store data into memory

» Send data from memory
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