
IAIK

Professor Horst Cerjak, 19.12.2005

1

Roderick Bloem V&T JPF

Verification & Testing

Java Path Finder

Roderick Bloem

IAIK

Professor Horst Cerjak, 19.12.2005

2

Roderick Bloem V&T JPF

Java Path Finder

Developed at Nasa Ames to check space
craft software

Used to find a concurrency bug in Deep
Space 1 Software

Use to find bugs in a real-time operating
system

(Not quite automatically!)

Willem Visser,

one of the JPF

developers

IAIK

Professor Horst Cerjak, 19.12.2005

3

Roderick Bloem V&T JPF

This Week: Details of JPF

• Example of a concurrency bug

• Backtracking JVM

• Example

• Making the JVM efficient
– Symmetry

IAIK

Professor Horst Cerjak, 19.12.2005

4

Roderick Bloem V&T JPF

Mars Rover Bug

bus,

protected

by mutex

Bus Mgmt (short)

Communications (long)

Meteo

(infrequent, but short)

Priority

Example:

• Meteo starts

• bus mgmt interrupts

• bus mgmt blocks on bus

• meteo is scheduled

• meteo finishes quickly

• bus mgmt continues

• (meteo can not restart

until mgmt completes)

IAIK

Professor Horst Cerjak, 19.12.2005

5

Roderick Bloem V&T JPF

Mars Rover Bug

Meteo starts, locks bus

Management interrupts, blocks on locked bus

Communication starts, blocks out meteo because of priority

Management can not proceed until Communications done.

This takes too long, the system times out and

diagnosis software reboots.

http://research.microsoft.com/~mbj/Mars_Pathfinder/Mars_Pathfinder.html

IAIK

Professor Horst Cerjak, 19.12.2005

6

Roderick Bloem V&T JPF

JPF: How It Is Done

The meat:

• A backtracking Java Virtual Machine

• Supports all byte codes, including libraries

What makes it practical:

• Closed system assumption (you provide the inputs, JPF does thread
scheduling)

• collapses states

• partial order reduction

• symmetry reduction

• program slicing

• Abstraction

• Runtime Analysis Techniques

IAIK

Professor Horst Cerjak, 19.12.2005

7

Roderick Bloem V&T JPF

JPF: Example

Planner Environment

Event1

Event2

wait signal

waitsignal

The events are not blocking for the sender. You can signal and then continue.

IAIK

Professor Horst Cerjak, 19.12.2005

8

Roderick Bloem V&T JPF

JPF: Example

class Event{

int count = 0;

public synchronized

void wait_for_event(){

V1 wait();

}

public synchronized

void signal_event(){

V2 count = count + 1;

V3 notifyAll();

}

}

Very large state! How do we solve that?

class Planner extends Thread{

int count = 0;

public void run(){

P1 while(true){

P2 if(count == e1.count)

P3 e1.wait_for_event();

P4 count = e1.count;

P5 // do work

P6 e2.signal_event();

}}}

class Environment extends
Thread{

public void run(){

E1 while(true){

E2 e1.signal_event();

E3 e2.wait_for_event

}}}

IAIK

Professor Horst Cerjak, 19.12.2005

9

Roderick Bloem V&T JPF

JPF: Example Abstracted

class Event{

Boolean count = 0;

public synchronized

void wait_for_event(){

V1 wait();

}

public synchronized

void signal_event(){

V2 count = !count;

V3 notifyAll();

}

}

class Planner extends Thread{

Boolean count = 0;

public void run(){

P1 while(true){

P2 if(count == e1.count)

P3 e1.wait_for_event();

P4 count = e1.count;

P5 // do work

P6 e2.signal_event();

}}}

class Environment extends
Thread{

public void run(){

E1 while(true){

E2 e1.signal_event();

E3 e2.wait_for_event

}}}Hunt the Bug!

IAIK

Professor Horst Cerjak, 19.12.2005

10

Roderick Bloem V&T JPF

State Graph

P1 0 0 | E1 0

P2 0 0 | E1 0

P

P1 0 0 | E2 0

E

P3 0 0 | E1 0

P

P3 0 0 | E2 0

P3 0 0 | E2V2 0

E

P3 0 1 | E2V3 0

E

P3 0 1 | E3 0

E

P3 0 1 | E3V1 0

E

P2 0 0 | E2 0

P3V1 0 1 | E3V1 0

P

P1 0 0 | E2V2 0

PE

E

Legend

Planner line, count, e1.count |

Env line e2.count

underlined means waiting

IAIK

Professor Horst Cerjak, 19.12.2005

11

Roderick Bloem V&T JPF

JPF Backtracking JVM

Keep track of states we have visited.

What is state?

– Call stack for every java thread

– Static info (in classes)

– Dynamic info (objects on the heap)

– Java operand stack

IAIK

Professor Horst Cerjak, 19.12.2005

12

Roderick Bloem V&T JPF

JPF Backtracking JVM

// depth first search

visit(s){

if s in hashtable, return;

enter current state in hash table

for each possible next state s

visit(s);

}

Performance:

20 states/second, 50k states in 512MB

Note: this is Depth-First Search. We can also do Breadth-First Search.
What are benefits & disadvantages?

IAIK

Professor Horst Cerjak, 19.12.2005

13

Roderick Bloem V&T JPF

BFS & DFS

BFS

•Does not get stuck in

infinite loop

•Finds shortest path to error

•Typically uses more

memory

DFS

•May not find error at all

•Often uses less memory

IAIK

Professor Horst Cerjak, 19.12.2005

14

Roderick Bloem V&T JPF

Example of DFS Infinite Loop

• assert false is a “bug” that should be found

• Always schedule thread 1:
• never returns to same state

• Search does not end

• BFS finds bug after one or two schedulings

thread 1:
Vector a = new Vector();

while(true){

a.add(new Object());

}

thread 2:
assert(false);

IAIK

Professor Horst Cerjak, 19.12.2005

15

Roderick Bloem V&T JPF

Collapsing example

swap(a,b)

Without Collapsing

a

b

state after swap

a

b

state before swap

IAIK

Professor Horst Cerjak, 19.12.2005

16

Roderick Bloem V&T JPF

Collapsing example
With Collapsing

swap(a,b)

Without Collapsing

a

b

state after swap

swap(a,b)

a

b

state before swap

a

b

state before swap

a

b

state after swap

Only needs space for changed fields!

IAIK

Professor Horst Cerjak, 19.12.2005

17

Roderick Bloem V&T JPF

Collapsing States

• States are structured and changes are local

• Objects are hashed on pointer value and content

• Store every object only once, use hash indices instead of memory
addresses for fields

• Performance: 500-1500 states/second, millions of states in 512MB

• If we use uncollapsing to reconstruct states from the hash tables, we
can use collapsed states on the DFS stack as well.

• Performance: 6k-10k states/second, 4X memory improvement

• Collapsing works well for DFS, but not necessarily for BFS.

IAIK

Professor Horst Cerjak, 19.12.2005

18

Roderick Bloem V&T JPF

Symmetry

Do not consider a state if you have seen an equivalent state
before

Example: loading classes

Suppose thread T1 loads class A, T2 loads class B.

Depending on the order of execution, A and B end up in
different locations. We have equivalent but different
states:
– (A,B) v. (B,A)

IAIK

Professor Horst Cerjak, 19.12.2005

19

Roderick Bloem V&T JPF

Symmetry: Class Loading

When loading a class, check if a slot number is assigned to

it, and if the slot is free

• If yes, load class into that slot

• If no, load class into first free slot, assign a slot number

With n classes you have n instead of n! possible states.

Example: first you try an interleaving that loads A then B. You

remember: A goes into slot 0, B into slot 1.

Then you backtrack and try an interleaving that loads B first. It goes to

slot 1 even though slot 0 is available

IAIK

Professor Horst Cerjak, 19.12.2005

20

Roderick Bloem V&T JPF

Symmetry

Same problem for object creation.

Solution: Try to always put objects in the same

place

An objects is identified by

1. The new() statement that creates it and

2. The invocation of that statement (numbered

consecutively)

IAIK

Professor Horst Cerjak, 19.12.2005

21

Roderick Bloem V&T JPF

Symmetry
class S1 { int x; }

class T1 extends Thread {

public void run(){

S1 s1; int x = 1;

s1 = new S1();

x = 3;

}

}

class Main{

public static void main(…){

T1 t1 = new T1();

T2 t2 = new T2();

t1.start(); t2.start();

}

class S2 { int y; }

class T2 extends Thread {

public void run(){

S2 s2; int x = 1;

s2 = new S2();

x = 3;

}

}

Symmetry reduction reduces state space from
258 to 105 states.

IAIK

Professor Horst Cerjak, 19.12.2005

22

Roderick Bloem V&T JPF

More Tricks

• Multithreaded Slicing

• Abstraction

• Integration with Eraser and Locktree

IAIK

Professor Horst Cerjak, 19.12.2005

23

Roderick Bloem V&T JPF

Experience

• Found bug in Remote Agent Space Craft

Controller

• Found bug in Real Time OS for aircraft

