Verification & Testing
Hoare Logic

Roderick Bloem
JAIK

. Roderick Bloem V&T (3) Hoare Logic

1



A Ty

Today

« Undecidabllity
« Manual proofs with Hoare Logic

. Roderick Bloem V&T (3) Hoare Logic

2



Motivation

Proving correctness of programs is undecidable
— You can do it only by hand
— Model checking does not (always) work: infinite state
Space
Hoare logic: notation plus set of rules that allows
you to prove programs correct by hand.

— We use very simple version: no function calls, no
mallocs, etc

We will use Hoare logic later to compute
abstractions

. Roderick Bloem V&T (3) Hoare Logic

3



TU

IAIK Grazm

Interlude: The Meta Game

Something is a game if (and only if) it fulfills the following:
1. It has two players, A and B
2. A starts, turns alternate
3. always ends (in win or draw)

Example: tic-tac-toe, connect-four, but not chess

The “meta-game,” played by two players
Turns (A starts):

1. Player picks a game,

2. Play the game (other player starts),

3. add one to score of winner (if draw, point for player who did not
choose.)

Alternate turns until one player has 5 points

Is the meta-game a game?

. Roderick Bloem V&T (3) Hoare Logic

4



More Paradoxes

S={A| A ¢ A} (All sets that do not contain
themselves)

The Barber’s paradox

. Roderick Bloem V&T (3) Hoare Logic

5



The Halting Problem

Does this program halt?

int main () {

BigInt 1;
i << cin; // cin > 0
while (i !'= 1) {
1f(1 1s even)
i =1/2;
else

1= 3*1 + 1;

}

. Roderick Bloem V&T (3) Hoare Logic

6



Halting Problem

Halting problem is undecidable:

There is no program H(G) that decides, given a program G,
whether it halts

— This holds for programs without input, for programs with a fixed
iInput, for the question whether the programs holds for all inputs,
etc.

Proof sketch:

— Suppose there is an algorithm H with as input a program P that
outputs true iff P halts (on all inputs)

— Take this program: weird () { if (H(weird)) while (1) ;}
— |Is H(weird) true or false?
— There is no correct implementation for H!

. Roderick Bloem V&T (3) Hoare Logic

7



A Ty

Reduction

Problem A reduces to problem B if you can use an
algorithm for B to solve A
— If B is decidable, sois A
— If A'is not decidable, neither is B

More undecidable problems:
— Can G reach location |?
— Can G reach location | with d=07?
— In G, can d ever be 0?

The halting problem reduces to these problems.

— For instance, R(G,l) = “can G reach location I” can be used to
solve the halting problem

— H(G) = R(G,l) where | is the last line in the program

. Roderick Bloem V&T (3) Hoare Logic

8



Ways Out

* Don’t prove correctness

* Incomplete Verification
— Closing the program by providing inputs (test, JPF)
— Abstraction and refinement (SLAM, BLAST)
— Verify only some programs

« Manual proof using Hoare Logic

. Roderick Bloem V&T (3) Hoare Logic

9



TU

IAIK Grazm

Hoare Logic

A Hoare triple:
{P} S {Q},
P is the precondition

Q is the postcondition
S is a program

Meaning: if P holds before execution and S finishes, then Q holds afterwards.
Note: we prove partial correctness. If S runs forever, {P}S{Q} holds.

Example:

1. {x=1}x=x+1{x=2}

2. {x>9}x:=x+1{x>10}
3. {x>100}x:=x+1{x>10}

Example 1 and 2 give the weakest precondition. We normally prefer that (it
gives all circumstances under which the program is correct)

In the following we will assume that variables are integer.

. Roderick Bloem V&T (3) Hoare Logic

10



IAIK

Hoare Logic: Rules

Axioms to find the weakest precondition

Assignment: X:=e

Consecution: S1: S2
If-statement: If b then S1 else S2
Loops: while b do S od
Plus

— extra “glue” rules to make things work
— Function calls, mallocs, pointers, etc

. Roderick Bloem V&T

(3) Hoare Logic

11



IAIK

Axiom of Assignment

{P[x > e]} x:=e {P}
P[x — e] means that x is replaced by e in P

Example:

y =4 X =y {x=4j
x+1=4}x=x+1{x=4}
{x=4}x:=2*x {x=8}
x<4}x:=2*x{x<8}

This rule gives the weakest precondition, i.e., {P[x—¢e]}
holds before S if and only if P holds afterwards

. Roderick Bloem V&T (3) Hoare Logic

12



Ty

IAIK

Seqguencing Rule (Consecution)

{P} S1{Q} {Q} S2{R}
{P} S1; S2 {R}

Example:

x+1 =4} x:=x+1{x=4}
x=4}x=x*2{x=8}
Conclusion:
X=3}x=x+1,x:=x*2{x=28}

The horizontal line means: if everything above the line is true, then so is
everything below the line.

. Roderick Bloem V&T (3) Hoare Logic

13



IAIK

Conditional Rule

{Pac} S1{Q} {Pa-c} S2{Q}
{P} If c then S1 else S2 fi {Q}

Example:
{x > 0} skip {x = 0}
{x <0} x=-x{x=>0}

{true} If(x = 0) then skip else x = -x fi {x > 0}

. Roderick Bloem V&T (3) Hoare Logic

14



IAIK

Conditional Rule (Alternative)

{P1} S1{Q} {P2} S2 {Q}
{cAP1l v —cAP2} If c then S1 else S2 fi {Q}

Example:
{x = 0} skip {x > 0}
{x <0} x=-x{x=>0}

{x>0 v x<0} if(x = 0) then skip else x = -x fi {x > 0}

. Roderick Bloem V&T (3) Hoare Logic

15



IAIK

While Rule

{P Ac}S{P}
{P} while cdo S od {P A —q}

Example This is the hardest rule: how do you
IXx<4lx=x+1{x<4} find P?
{x <4} {while(x <4)dox=x+1o0d{x =4}

Notes:
P=x<4
q=x<4

{x+1 <4} ={x<4}
{PAq}={x<4d4Ax<4}={x<4}
{PA-q}={x<4A=(x<4)}={x=4}

. Roderick Bloem V&T (3) Hoare Logic

16



Consequence Rule

Strengthening the precondition
{P}S{Q} P ->P
{P’} S {Q}

Weakening the postcondition

{P}S{Q} Q-»>Q
{P} S {Q’}

Example:
{x = -5} If(x > 0) then skip else x = -x fi {x > 0}
{true} If(x = 0) then skip else x = -x fi {x # -10}

. Roderick Bloem V&T (3) Hoare Logic

17



Proof Example |

} else {
skip;

}

{b>a}

. Roderick Bloem V&T (3) Hoare Logic

18



TU
AIK

Grazm

Proof Example Il

Proving a program using Hoare logic requires creativity. Let's try a
simple example.

{x 20 Ay >0}

r := x; gq := 0;
while(r =2 y) do

r :=r - y;
q :=qg + 1;

od

. Roderick Bloem V&T (3) Hoare Logic

19



TU

IAIK Grazm

Proof Example

This proof shows all the important data but it is hard to follow how it was
built. See the next slide for a deduction.

{x =20 Ay >0}

r := x; gq := 0;

{x = (yvg+tr) A 0L r Ay 20}
while(r =2 y) do
{rzvyvyAnx=(yvg+r) A0 1r Ay =20}
r :=r - VY;

q :=qg + 1;

{x = (yvg+tr) A0 r Ay =20}

od
{x=(yvg+tr) A0 rAr<yAy=20}

. Roderick Bloem V&T (3) Hoare Logic

20



TU

IAIK Grazm

Proof Example: Deductive

We've split the proof into three parts, mainly because of space.

This proof is better: it explains every step.

Lt
L = (whilefr > g)dor := r —y;q = q + 1;0d) When you answer an exam guestion on
S Hoare logic, show in which order you took
S={r=umxq:=0L),
the steps.
and let

Rl={ez>0Ay>0lri=mg:=0We=yg+rir=0ry>0}
R={r=yy+rirz0ny>0L{z=yg+rarz0Ay=0nr<y}

First, we prove that if &1 and B2 are correct, then so is the program. We use the axiom of consecution and strengthening of the precondition.
R R2
{zz0ryz2018{z=yg+rr0<r <y}
{rz20ry=>01S{z=yg+rr0<r <y}

Then we proof F1. We use the axiom of assipnment twice and the axiom of consecution once.

{zz0nyz0 i=x{r=rArz0AyZ20} {z=rArz0rAy>20lg=0Wz=yg+rarz=0ny=0}
{zz0ryz0lri=ng=Wr=yg+rir=0Ay>0}

Then, we proof B2 uwsing the axiom of assipnment (twice), the axiom for consecution and that for loops. For the latter, we have P = (=g +rir =
07y =>0)and p = (r=y).

{r=yg+rrarz00y=00rzylri=r—glz=ylg+ 1) +rAar=0Ay>0} {z=ylg+l+rarz0rAy>=0lgi=qg+{z=gyg+rir=0ry=0}
{r=gg+riarz=0Ay20Ar 2ybri=r —gg:=q+lz=yg+rAr=0rAy>=0}
{r=yg+rrarz=00y >0} {z =yg+rAr=0ry =007 <y}

- MNUUCIIVAN DIUCIHII vl \9) rvaic Luyiuv

21




More Examples

X = 4y Input:
y = 0; a .. integer
while(x != 0) {
X = xXx - 1;
y =y t 2;
}
assert (y == 2*a);

. Roderick Bloem V&T (3) Hoare Logic

22



s = 0;

Input:
1 = 0; a .. array of
while(1 != n) integers
s = s + al1]; n .. length of a
1 =1 + 1;
}
assert (s == ﬁ;}a[j]);

. Roderick Bloem V&T (3) Hoare Logic

24



IAIK

Input:

r = false; a .. array
i = 0; n .. length of a
while(1 != n) X .. value to look

1f(af1] == x) { for in a

r = true;

} Hint

i=1i+ 1; (V2o ) == false
}

_ n-—1 - —

assert(r == (Vjzo alJl == x));

. Roderick Bloem

V&T

(3) Hoare Logic

26



