
IAIK

Professor Horst Cerjak, 19.12.2005

1

Anja Karl V&T 3 Memory Debuggers

Verification & Testing

Memory Debuggers

Anja Karl

V&T 3

IAIK

Professor Horst Cerjak, 19.12.2005

2

Anja Karl V&T 3 Memory Debuggers

Who has programmed in C?

IAIK

Professor Horst Cerjak, 19.12.2005

3

Anja Karl V&T 3 Memory Debuggers

Who had memory problems like invalid

reads/writes or memory leaks?

Why are they so difficult to fix?

IAIK

Professor Horst Cerjak, 19.12.2005

4

Anja Karl V&T 3 Memory Debuggers

Who uses valgrind?

IAIK

Professor Horst Cerjak, 19.12.2005

5

Anja Karl V&T 3 Memory Debuggers

Memory Problems

Uninitialized read
int a, b;

a = b;

Unallocated read
int *p =

(int*)malloc(4*sizeof(int));

printf(“%d”, p[4]);

Unallocated write
int *p =

(int*)malloc(3*sizeof(int));

p[3] = 10;

Write after free
int *p =

(int*)malloc(4*sizeof(int));

free(p);

p[2] = 10;

Memory Leak
int *p =

(int*)malloc(4*sizeof(int));

end of program

Freeing unallocated memory
int *p;

free(p);

or
p = malloc(10 * sizeof(int));

free(p);

free(p);

Are these real problems?

IAIK

Professor Horst Cerjak, 19.12.2005

6

Anja Karl V&T 3 Memory Debuggers

None of These Errors Dump Core

• These errors do not always dump core.
(Depending on compiler, OS)

• They sometimes produces expected
results, sometimes unexpected results

• Uninitialized read: results depend on
previous function call
• int a, b;

• a = b;

• Unallocated write may overwrite other
data. May dump core if p points to the
end of an allocated page,
• int *p =
(int*)malloc(3*sizeof(int));

• p[3] = 10;

• Write after free: may overwrite other
data if memory is reallocated before
write. May dump core if memory is
returned to OS
int *p = malloc(4*sizeof(int));

free(p);

p[2] = 10;

• Unallocated read. Returns data from
different data structure.
int *p = malloc(4*sizeof(int));

int b;

b = p[4];

• Memory Leak. Slows program down and
may dump core if in a loop.
int *p = malloc(4*sizeof(int));

end of program

IAIK

Professor Horst Cerjak, 19.12.2005

7

Anja Karl V&T 3 Memory Debuggers

Memory Errors

Memory Errors are

– hard to find

– often show themselves only occasionally

– often become apparent in different piece of code

– happen frequently!

IAIK

Professor Horst Cerjak, 19.12.2005

8

Anja Karl V&T 3 Memory Debuggers

Finding Memory Errors

List of tools that help with memory errors:

• IBM’s Purify (Rational)

• Valgrind (open source, Linux)

• electric fence (open source)

• dmalloc (open source)

• Clang & gcc sanitizer

IAIK

Professor Horst Cerjak, 19.12.2005

9

Anja Karl V&T 3 Memory Debuggers

Valgrind

Valgrind is a suite of tools, including a memory

checker

• Translate to intermediate code

• Instrument intermediate code

• Execute on virtual CPU

Memcheck: increases code size 12x. Runs 25-50x

slower.

Null: adds nothing, runs 4x slower

IAIK

Professor Horst Cerjak, 19.12.2005

10

Anja Karl V&T 3 Memory Debuggers

Valgrind Workings

Per byte of memory add

• Eight bits to store whether each of the bits has a valid value

• One bit to store whether the byte has been allocated

We want to find

• accesses where memory is not allocated

• decisions that depend on uninitialized values. (But: uninitialized

copies are OK)

V V V

A

Memory

Address valid

Value valid VVVV V shadow memory

IAIK

Professor Horst Cerjak, 19.12.2005

11

Anja Karl V&T 3 Memory Debuggers

Valgrind Workings

• Read or write: Check A-bit

• Load memory to CPU register: also load value bits into shadow
register

• Writes: set V-bits

• Store register to memory: store value bits into shadow memory

• Value is used as address: check V-bits

• Branch depends on values: check V-bits

• When value bits have been checked, they are set (prevents same
error from being reported again)

• Malloc/new: address is valid, value is not. Keep “red zone”
(address bits set to false) between memory chunks

• free/delete: check that memory has been allocated, prevent memory
from being reallocated for as long as possible. Set A-bit to 0.

IAIK

Professor Horst Cerjak, 19.12.2005

12

Anja Karl V&T 3 Memory Debuggers

Examples

OK:

main(){

int* a = malloc(sizeof(int));

int *b = malloc(sizeof(int));

*b = *a;

}

main(){

int* a;

*a = *a & 0xfffe;

// bit 0 now initial’d

}

Wrong:

main(){

int* a = malloc(sizeof(int));

int* b = malloc(sizeof(int));

*b = *a;

printf(“%d\n”,*b);

}

IAIK

Professor Horst Cerjak, 19.12.2005

13

Anja Karl V&T 3 Memory Debuggers

Example
1. int *p;

2. int x = 1;

3. p = malloc(sizeof(int));

4. if(x){

5. *p = 3;

6. free(p);

7. printf("%d",*p);

8. } else {

9. printf("%d",*p);

10.}

IAIK

Professor Horst Cerjak, 19.12.2005

14

Anja Karl V&T 3 Memory Debuggers

More Details

Validity is kept on bit level. Need to properly handle

• Bit operations such as AND and OR

– ?  0 = 0, but ?  1 = ?

– ?  0 = ?, but ?  1 = 1

• Additions

• Shifts

• a XOR a

• Etc…

IAIK

Professor Horst Cerjak, 19.12.2005

15

Anja Karl V&T 3 Memory Debuggers

Example: Uninitialized Copy
int *p, *q;

max = user input, < 1024

p = (int*) malloc(1024*sizeof(int));

q = (int*) malloc(1024*sizeof(int));

for(i = 0; i < max; i++)

p[i] = 0;

memcpy(q, p, 1024 * sizeof(int));

for(i = 0; i < max; i++)

if(q[i])

printf(“strange!\n”);

free(p); free(q);

This program is deemed correct by
valgrind. Note that uninitialized
values may be copied, as long as they
are not visible.

Another example: a struct with four
allocated bytes often takes up 8
bytes. Copying the struct copies
uninitialized memory.

IAIK

Professor Horst Cerjak, 19.12.2005

16

Anja Karl V&T 3 Memory Debuggers

Bugs Valgrind Cannot Catch

void f(){

int a[10];

int b[10];

printf(“%d\n”,b[0]);

a[10] = 5;

printf(“%d\n”,b[0]);

}

Valgrind --tool=memcheck --leak-check=yes

--suppressions=suppress.supp

Valgrind cannot catch buffer

overflows on static and local

data. (only on malloc’ed

data.) (Why?)

IAIK

Professor Horst Cerjak, 19.12.2005

17

Anja Karl V&T 3 Memory Debuggers

Purify

Purify uses two bits of status per byte of memory

• Valid address?

• Valid data?

A = 0

V = 1
A = 1

V = 1

A = 0

V = 0

A = 1

V = 0

Read, write, free

forbidden malloc

Read, alloc forbidden

write

free
Read, write.

Read & write,

free forbidden

IAIK

Professor Horst Cerjak, 19.12.2005

18

Anja Karl V&T 3 Memory Debuggers

Purify

Less memory overhead: per byte, not per bit

No virtual CPU

• Error flagged when uninitialized bytes read:

uninitialized copies not allowed

• Faster, but more spurious warnings

IAIK

Professor Horst Cerjak, 19.12.2005

19

Anja Karl V&T 3 Memory Debuggers

Electric Fence
Memory is divided into pages (4096 bytes, usually)

• For every malloc, adjacent page of inaccessible memory is allocated

• MMU checks accesses to inaccessible pages without time overhead

• Memory overhead: every datastructure is at least 1 page

• Big overhead if you have small datastructures!

• The inaccessible page does not really count

• No virtual CPU, no annotation

• Only catches index too large accesses

a = malloc(128*sizeof(int))
ACCESSIBLE,

unused
NOT ACCESSIBLE

page 1 page 2

*a

IAIK

Professor Horst Cerjak, 19.12.2005

20

Anja Karl V&T 3 Memory Debuggers

More Valgrind Tools

Valgrind also includes

• Helgrind & Data Race Detector implement race

condition detection (‘happens-before’)

• Massif is a heap profiler

• Callgrind is a profiler

• Cachegrind analyzes cache usage

• AddrCheck uses only A bits

• NullGrind

