Example: V-bits and A-bits in Valgrind

1: wvoid main ()
2 {
3: int a;
4: int *p;
5: a = 99;
6: p = (int*) malloc (2*sizeof (int));
7 pl0] = 0;
8: printf ("p[1]=%d\n", pl[l]); //uninitialized read
9: pll] &= OxXFFFFFFFE;
10: if(p[1] & 0x00000001)
11: ;
12: pl0] = pl[l]l; // copy is OK, even if not fully initialized
13: free(p);
14: p[0] = 0; //unallocated write
15: }
After line 4:
content V-bits A-bits
random 0x00000000 OxXF
P random 0x00000000 OxF
After line 5:
content V-bits A-bits
a 99 OxFFFFFFFF OxF
P random 0x00000000 OxF
After line 6:
content V-bits A-bits
a 99 OxFFFFFFFF OxF
S Address of *p OxFFFFFFFF OxF
pl0] random 0x00000000 OxF
pll] random 0x00000000 OxF
After line 7:
content V-bits A-bits
a 99 OxFFFFFFEFFE OxF
P Address of *p OxFFFFFFFF OxF
pl[0] 0 OxFFFFFFFF OxF
pll] random 0x00000000 OxF




Line 8: Uses p[l] -> check a-bits and v-bits
a-bits are fine (no unallocated read)
v-bits are not (using uninitialized data) -> Warning!

After line 9:

content V-bits A-bits
99 OXFFFFFFFF OxF
P Address of *p OXFFFFFFFF OxF
pl[0] 0 OXFFFFFFFF OxF
pll] Random, last bit is O 0x00000001 OxF

Line 10: Uses the last bit of p[l] -> check a-bits and this one v-bit
a-bits are fine (no unallocated read)
this one v-bit is fine -> NO Warning!

Line 12: check a-bits. If we only copy data, we do NOT check the
v-bits, we only copy them.
Reason: real code copies uninitialized data quite a 1lot.

After line 12:

content V-bits A-bits
a 99 OXFFFFFEFFF OxF
P Address of *p OxXFFFFFFFF OxF
pl0] Random, last bit is 0x00000001 OxF
pll] Random, last bit is 0x00000001 OxF
After line 13:

content V-bits A-bits

99 OXFFFFFFFF OxF
P Address of *p OxFFFFFFFF OxF
pl0] Random, last bit is 0x00000001 0x0
pll] Random, last bit is 0x00000001 0x0

Line 14: Writes p[0] ->

check a-bits -> Warning




