
Example: V-bits and A-bits in Valgrind

1: void main()
2: {
3: int a;
4: int *p;
5: a = 99;
6: p = (int*) malloc(2*sizeof(int));
7: p[0] = 0;
8: printf("p[1]=%d\n", p[1]); //uninitialized read
9: p[1] &= 0xFFFFFFFE;
10: if(p[1] & 0x00000001)
11: ;
12: p[0] = p[1]; // copy is OK, even if not fully initialized
13: free(p);
14: p[0] = 0; //unallocated write
15: }

After line 4:
content V-bits A-bits

a random 0x00000000 0xF

p random 0x00000000 0xF

After line 5:
content V-bits A-bits

a 99 0xFFFFFFFF 0xF

p random 0x00000000 0xF

After line 6:
content V-bits A-bits

a 99 0xFFFFFFFF 0xF

p Address of *p 0xFFFFFFFF 0xF

p[0] random 0x00000000 0xF

p[1] random 0x00000000 0xF

After line 7:
content V-bits A-bits

a 99 0xFFFFFFFF 0xF

p Address of *p 0xFFFFFFFF 0xF

p[0] 0 0xFFFFFFFF 0xF

p[1] random 0x00000000 0xF

Line 8: Uses p[1] -> check a-bits and v-bits
 a-bits are fine (no unallocated read)

 v-bits are not (using uninitialized data) -> Warning!

After line 9:
content V-bits A-bits

a 99 0xFFFFFFFF 0xF

p Address of *p 0xFFFFFFFF 0xF

p[0] 0 0xFFFFFFFF 0xF

p[1] Random, last bit is 0 0x00000001 0xF

Line 10: Uses the last bit of p[1] -> check a-bits and this one v-bit
 a-bits are fine (no unallocated read)
 this one v-bit is fine -> NO Warning!

Line 12: check a-bits. If we only copy data, we do NOT check the
 v-bits, we only copy them.
 Reason: real code copies uninitialized data quite a lot.

After line 12:
content V-bits A-bits

a 99 0xFFFFFFFF 0xF

p Address of *p 0xFFFFFFFF 0xF

p[0] Random, last bit is 0 0x00000001 0xF

p[1] Random, last bit is 0 0x00000001 0xF

After line 13:
content V-bits A-bits

a 99 0xFFFFFFFF 0xF

p Address of *p 0xFFFFFFFF 0xF

p[0] Random, last bit is 0 0x00000001 0x0

p[1] Random, last bit is 0 0x00000001 0x0

Line 14: Writes p[0] -> check a-bits -> Warning

